Line Integrals

Definition Let E be a subset in \mathbb{R}^{m}. A vector field on E is a vector (or vector-valued) function $F: E \rightarrow \mathbb{R}^{n}$ defined by

$$
F(x)=\left(F_{1}(x), F_{2}(x), \ldots, F_{n}(x)\right) \in \mathbb{R}^{n} \quad \text { for each } x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in E .
$$

Definition Let C be a plane curve defined by the parametric equations $r(t)=(x(t), y(t))$, $t \in[a, b]$. Then

- C is called a smooth curve if $r^{\prime}(t)$ is continuous and $r^{\prime}(t) \neq 0$ for all $t \in[a, b]$.
- C is called a piecewise smooth curve if there exists a partition

$$
P=\left\{a=t_{0}<t_{1}<\cdots<t_{n}=b\right\}
$$

such that $r^{\prime}(t) \neq 0$ is continuous for all $t \in\left(t_{i-1}, t_{i}\right)$ and $\lim _{t \rightarrow t_{i}^{ \pm}} r^{\prime}(t)$ exists for each $1 \leq i \leq n$.
Definition Let C be a smooth plane curve given by the vector function $r(t)=(x(t), y(t))$, $t \in[a, b]$, let f be a function defined on C and let $s(t)=\int_{a}^{t}\left|r^{\prime}(u)\right| d u$. Then the line integral of f along C is defined by

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(r(t))\left|r^{\prime}(t)\right| d t=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \Delta s_{i} \quad \text { if this limit exists, }
$$

where $d s=\left|r^{\prime}(t)\right| d t=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t, P_{i}^{*}\left(x_{i}^{*}, y_{i}^{*}\right)=r\left(t_{i}^{*}\right) \in \widehat{P_{i-1} P_{i}}$ and Δs_{i} is the length of the subarc $\widehat{P_{i-1} P_{i}}$ from $P_{i-1}=r\left(t_{i-1}\right)$ to $P_{i}=r\left(t_{i}\right)$.

In general, if C is a (piecewise) smooth curve in \mathbb{R}^{m} given by the vector function $r(t)=$ $\left(x_{1}(t), \ldots, x_{m}(t)\right), t \in[a, b]$ and

- if f is a function (scalar field) defined on C, then the line integral of f along C is defined by

$$
\begin{aligned}
& \int_{C} f\left(x_{1}, x_{2}, \ldots, x_{m}\right) d s=\int_{a}^{b} f(r(t))\left|r^{\prime}(t)\right| d t \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{1 i}^{*}, x_{2 i}^{*}, \ldots, x_{m i}^{*}\right) \Delta s_{i} \quad \text { if this limit exists. }
\end{aligned}
$$

- if $F=\left(F_{1}, \ldots, F_{m}\right)$ is a continuous vector field defined on C, then the line integral of F along C is defined by

$$
\int_{C} F(r) \cdot d r=\int_{a}^{b} F(r(t)) \cdot r^{\prime}(t) d t
$$

where $F(r(t)) \cdot r^{\prime}(t)$ denotes the inner product of $F(r(t)), r^{\prime}(t) \in \mathbb{R}^{m}$.
Remarks Let C (piecewise) smooth curve defined by $r(t), t \in[a, b]$.
(a) If $\phi:[c, d] \rightarrow[a, b]$ is a continuously differentiable, orientation preserving onto map such that $\phi^{\prime}(u)>0, \phi(c)=a, \phi(d)=b$, then C is given by the vector function $R(u)$ defined by

$$
C: R(u)=r(\phi(u)), \quad u \in[c, d]
$$

and since

$$
\begin{aligned}
\int_{C} F(R) \cdot d R= & \int_{c}^{d} F(R(u)) \cdot R^{\prime}(u) d u \\
= & \int_{c}^{d}\left[F(r(\phi(u))) \cdot r^{\prime}(\phi(u))\right] \phi^{\prime}(u) d u \\
& \operatorname{Set} t=\phi(u) \Longrightarrow d t=\phi^{\prime}(u) d u, \phi(c)=a, \phi(d)=b \\
= & \int_{a}^{b}\left[F(r(t)) \cdot r^{\prime}(t)\right] d t=\int_{C} F(r) \cdot d r
\end{aligned}
$$

the line integral is left invariant by every orientation-preserving change of parameter.
(b) For $u \in[a, b]$, let $\phi(u)=a+b-u$ and let $-C$ be a curve defined by

$$
-C: \quad R(u)=r(\phi(u))=r(a+b-u) \quad \text { for } u \in[a, b] .
$$

Since $\phi:[a, b] \rightarrow[a, b]$ is onto, $\phi^{\prime}(u)=-1, \phi(a)=b$ and $\phi(b)=a$, the curve $-C$ denotes the same curve traversed in the opposite direction and

$$
\begin{aligned}
\int_{-C} F(R) \cdot d R= & \int_{a}^{b} F(R(u)) \cdot R^{\prime}(u) d u \\
= & \int_{a}^{b}\left[F(r(\phi(u))) \cdot r^{\prime}(\phi(u))\right] \phi^{\prime}(u) d u \\
& \operatorname{Set} t=\phi(u) \Longrightarrow d t=\phi^{\prime}(u) d u, \phi(a)=b, \phi(b)=a \\
= & \int_{b}^{a}\left[F(r(t)) \cdot r^{\prime}(t)\right] d t=-\int_{a}^{b}\left[F(r(t)) \cdot r^{\prime}(t)\right] d t=-\int_{C} F(r) \cdot d r
\end{aligned}
$$

Examples

1. Evaluate $\int_{C}\left(2+x^{2} y\right) d s$, where C is the upper half of the unit circle $x^{2}+y^{2}=1$.
2. The center of mass of the wire C with density function $\rho(x, y),(x, y) \in C$, is located at the point
$\bar{x}=\frac{1}{m} \int_{C} x \rho(x, y) d s \quad \bar{y}=\frac{1}{m} \int_{C} y \rho(x, y) d s, \quad$ where $\quad m=\int_{C} \rho(x, y) d s=$ total mass of C.
3. Evaluate $\int_{C_{1}} y^{2} d x+x d y$, where C_{1} is the line segment from $(-5,-3)$ to $(0,2)$, and evaluate $\int_{C_{2}} y^{2} d x+x d y$, where C_{2} is the arc of the parabola $x=4-y^{2}$ from $(-5,-3)$ to $(0,2)$.
4. Evaluate $\int_{C} y \sin z d s$, where C is the circular helix given by the equations $x=\cos t$, $y=\sin t, z=t, 0 \leq t \leq 2 \pi$.
5. Find the work done $\int_{C} F(r) \cdot d r$ by the force field $F(x, y)=x^{2} \mathbf{i}-x y \mathbf{j}$ in moving a particle along the quarter-circle $C: r(t)=\cos t \mathbf{i}+\sin t \mathbf{j}, 0 \leq t \leq \pi / 2$.

Definition Let E be a subset of \mathbb{R}^{n} and let $F=\left(F_{1}, F_{2}, \ldots, F_{n}\right): E \rightarrow \mathbb{R}^{n}$ be a vector field defined on E. Then F is called a conservative vector field if there exists a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
F(x)=\nabla f(x) \quad \text { for all } x \in E
$$

Note that if F is a continuously differentiable conservative vector field, then f has continuous $2^{\text {nd }}$ order partial derivatives $f_{x_{i} x_{j}}=f_{x_{j} x_{i}}$ and

$$
\frac{\partial F_{i}}{\partial x_{j}}=f_{x_{i} x_{j}}=f_{x_{j} x_{i}}=\frac{\partial F_{j}}{\partial x_{i}} \Longrightarrow \frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}} \quad \text { for each } 1 \leq i, j \leq n \text { (integrability conditions) }
$$

In this situation, the function f is called a potential function for F.
Definition Let F be a continuous vector field defined on D, and let C_{1} and C_{2} be paths in D having the same initial points and the same terminal points. Then the line integral $\int_{C} F \cdot d r$ is called independent of path if

$$
\int_{C_{1}} F \cdot d r=\int_{C_{2}} F \cdot d r
$$

Fundamental Theorem for Line Integrals Let U be an open subset of \mathbb{R}^{m}, let $f: U \rightarrow \mathbb{R}$ be a continuously differentiable scalar field (function) and let $C: r=r(u), u \in[a, b]$ be a (piecewise) smooth curve that begins at $p=r(a)$ and ends at $q=r(b)$. Then the line integral of (a conservative field) ∇f along C satisfies that

$$
\int_{C} \nabla f(r) \cdot d r=f(r(b))-f(r(a))=f(q)-f(p)
$$

and is independent of the choice of paths in U joining from p to q.
Proof

Case 1: If C is smooth, then

$$
\int_{C} \nabla f(r) \cdot d r=\int_{a}^{b} \nabla f(r(u)) \cdot r^{\prime}(u) d u=\int_{a}^{b}\left[\frac{d}{d u} f(r(u))\right] d u=f(r(b))-f(r(a)) .
$$

Case 2: If C a (piecewise) smooth and $\left\{a=a_{0}<a_{1}<\cdots<a_{n-1}<a_{n}=b\right\}$ is a partition of $[a, b]$ such that

$$
C=\bigcup_{i=1}^{n} C_{i} \quad \text { where } \quad C_{i}=\left\{r(t) \mid t \in\left[a_{i-1}, a_{i}\right]\right\} \text { is smooth for } 1 \leq i \leq n
$$

then

$$
\begin{aligned}
& \int_{C} \nabla f(r) \cdot d r=\int_{\bigcup_{i=1}^{n} C_{i}} \nabla f(r) \cdot d r=\sum_{i=1}^{n} \int_{C_{i}} \nabla f(r) \cdot d r=\sum_{i=1}^{n} \int_{a_{i-1}}^{a_{i}} \nabla f(r(u)) \cdot r^{\prime}(u) d u \\
& \stackrel{\text { Case } 1}{=} \\
& \sum_{i=1}^{n} f\left(r\left(a_{i}\right)\right)-f\left(r\left(a_{i-1}\right)\right)=f(r(b))-f(r(a))
\end{aligned}
$$

Remarks

(a) This is a generalization of the Fundamental Theorem of Calculus since if $g:[a, b] \rightarrow \mathbb{R}$ is a continuous function with an anti-derivative $G(x)$ on (a, b) and if C is the line segment given by $r(x)=x, x \in[a, b] \subset \mathbb{R}$, then

$$
G(b)-G(a)=\int_{C} \nabla G(r) \cdot d r=\int_{a}^{b} \frac{d}{d x} G(x) d x=\int_{a}^{b} g(x) d x
$$

(b) If $C: r=r(u), u \in[a, b]$ is a (piecewise) smooth closed curve and if f is continuously differentiable on an open set U containing C, then

$$
\int_{C} \nabla f(r) \cdot d r=f(r(b))-f(r(a))=0 \quad \text { since } r(b)=r(a)
$$

This implies that if $F=\nabla f$ is conservative and continuous in U, the line integral $\int_{C} F(r)$. $d r=0$ along any (piecewise) smooth closed curve C in U.

Examples

1. Find the work done by the gravitational field $F(X)=-\frac{m M G}{|X|^{3}} X, X=(x, y, z) \in \mathbb{R}^{3}$, in moving a particle with mass m from the point $(3,4,12)$ to the point $(2,2,0)$ along a piecewise-smooth curve C.
2. Determine whether or not the given vector field is conservative.

- $F(x, y)=(x-y) \mathbf{i}+(x-2) \mathbf{j}$.
- $F(x, y)=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$.

Definition A continuous curve $C: r=r(u) u \in[a, b]$ is called simple if

$$
r(u) \neq r(t) \quad \text { for all } a \leq t<u<b \Longleftrightarrow \text { for all } u \neq t \in[a, b)
$$

A Jordan curve is a plane curve that is both closed and simple.

Definition A region D is called (path) connected if any two points in D can be joined by a path that lies in D, i.e. D is (path) connected if for all $p, q \in D$, there exists a continuous map $r:[a, b] \rightarrow D$ from $[a, b]$ into D such that $r(a)=p$ and $r(b)=q$.
Definition Let D be a region in the plane. Then D is called simply-connected if every simple closed curve in D encloses only points that are in D.
Remark If $F=\nabla f$ is conservative and continuous in D, and if C_{1} and C_{2} are paths in D having the same initial points and the same terminal points. Then $C_{1} \cup\left(-C_{2}\right)$ is a closed curve in D, and

$$
\begin{aligned}
& 0 \quad=\int_{C_{1} \cup\left(-C_{2}\right)} F \cdot d r=\int_{C_{1}} F \cdot d r+\int_{-C_{2}} F \cdot d r=\int_{C_{1}} F \cdot d r-\int_{C_{2}} F \cdot d r \\
& \Longrightarrow \quad \int_{C_{1}} F \cdot d r=\int_{C_{2}} F \cdot d r \text { (independent of path) }
\end{aligned}
$$

Green's Theorem Let $F=(P, Q)$ be a vector field on an simply-connected region Ω. Suppose that P and Q have continuous first-order partial derivatives on an open set that contains Ω, then

$$
\iint_{\Omega}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y=\oint_{C} P d x+Q d y
$$

where the boundary $C=\partial \Omega$ is oriented in the positive direction such that Ω is on the left-hand-side when traversing along C, and \oint_{C} denotes the line integral along C in the positively orientation.
Proof Suppose that Ω is an elementary region given by

$$
\left\{(x, y) \mid a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)\right\} \text { or }\left\{(x, y) \mid \psi_{1}(y) \leq x \leq \psi_{2}(y), c \leq x \leq d\right\}
$$

Type I

Type II
Ω is an elementary region: it is both of Type I and Type II
such that the boundary $\partial \Omega=C=C_{1} \cup C_{2}=C_{3} \cup C_{4}$, where

$$
\begin{aligned}
& C_{1}=\left\{(x, y) \mid y=\phi_{1}(x), a \leq x \leq b\right\}, \quad C_{2}=\left\{(x, y) \mid y=\phi_{2}(x), a \leq x \leq b\right\} \\
& C_{3}=\left\{(x, y) \mid x=\psi_{1}(y), c \leq y \leq d\right\}, \quad C_{4}=\left\{(x, y) \mid x=\psi_{2}(y), c \leq y \leq d\right\}
\end{aligned}
$$

Since

$$
\begin{aligned}
\iint_{\Omega} \frac{\partial Q}{\partial x} d x d y & =\int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} \frac{\partial Q}{\partial x} d x d y=\int_{c}^{d} Q\left(\psi_{2}(y), y\right) d y-\int_{c}^{d} Q\left(\psi_{1}(y), y\right) d y \\
\iint_{\Omega}-\frac{\partial P}{\partial y} d y d x & =-\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} \frac{\partial P}{\partial y} d y d x=\int_{a}^{b} P\left(x, \phi_{1}(x)\right) d x-\int_{a}^{b} P\left(x, \phi_{2}(x)\right) d x
\end{aligned}
$$

and

$$
\begin{aligned}
& \oint_{C} Q d y=\int_{C_{4} \cup\left(-C_{3}\right)} Q d y=\int_{C_{4}} Q d y-\int_{C_{3}} Q d y=\int_{c}^{d} Q\left(\psi_{2}(y), y\right) d y-\int_{c}^{d} Q\left(\psi_{1}(y), y\right) d y \\
& \oint_{C} P d x=\int_{C_{1} \cup\left(-C_{2}\right)} P d x=\int_{C_{1}} P d x-\int_{C_{2}} P d x=\int_{a}^{b} P\left(x, \phi_{1}(x)\right) d x-\int_{a}^{b} P\left(x, \phi_{2}(x)\right) d x
\end{aligned}
$$

we have

$$
\iint_{\Omega}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y=\oint_{C} P d x+Q d y .
$$

Remark Suppose that D_{1} and D_{2} are simply-connected regions with boundaries $\partial D_{1}=C_{3} \cup C_{1}$ and $\partial D_{2}=C_{2} \cup\left(-C_{3}\right)$ respectively and suppose that $D=D_{1} \cup D_{2}$ has the boundary $C=\partial D=$ $C_{1} \cup C_{2}$.

Since

$$
\begin{aligned}
\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x=\iint_{D_{1} \cup D_{2}}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x & =\iint_{D_{1}}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x+\iint_{D_{2}}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x \\
\oint_{C} P d x+Q d y=\oint_{C_{1} \cup C_{2} \cup C_{3} \cup\left(-C_{3}\right)} P d x+Q d y & =\oint_{C_{1} \cup C_{3}} P d x+Q d y+\oint_{C_{2} \cup\left(-C_{3}\right)} P d x+Q d y
\end{aligned}
$$

and since D_{1}, D_{2} are simple regions as in the preceding proof, we have

$$
\begin{aligned}
\iint_{D_{1}}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x & =\oint_{C_{1} \cup C_{3}} P d x+Q d y \\
\iint_{D_{2}}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x & =\oint_{C_{2} \cup\left(-C_{3}\right)} P d x+Q d y
\end{aligned}
$$

This proves the Green's Theorem on a more general region D

$$
\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y=\oint_{C_{1} \cup C_{2}} P d x+Q d y=\oint_{\partial D} P d x+Q d y
$$

Theorem Let $F=(P, Q)$ be a vector field on a simply-connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \quad \text { throughout } D \quad \text { (integrability condition) }
$$

Then F is conservative, i.e. there is a continuously differentiable function $f: D \rightarrow \mathbb{R}$ such that $F=\nabla f$ on D.
Proof Fix a point $p=(a, b) \in D$. For any $(s, t) \in D$, let $f: D \rightarrow \mathbb{R}$ be defined by

$$
f(s, t)=\int_{C} P d x+Q d y, \quad \text { where } C \text { is a piecewise smooth path in } D \text { from } p \text { to }(s, t)
$$

This is well defined since if C_{1} is another piecewise smooth path in D from p to (s, t) such that $C \cup\left(-C_{1}\right)$ is a simple closed curve enclosing a region $E \subset D$. By the Green's Theorem, we have

$$
\int_{C} P d x+Q d y-\int_{C_{1}} P d x+Q d y=\oint_{C \cup\left(-C_{1}\right)} P d x+Q d y=\iint_{E}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d x d y=0
$$

and

$$
\int_{C} P d x+Q d y=\int_{C_{1}} P d x+Q d y \quad \text { (independent of path) }
$$

Hence we may simply rewrite the definition of f at each point $(s, t) \in D$ as follows

$$
f(s, t)=\int_{p}^{(s, t)} P d x+Q d y
$$

where the line integral is integrated along any piecewise smooth path in D from p to (s, t). For each $(s, t) \in D$ and for any sufficiently small h, k such that $(s+h, t+k) \in D$, since

$$
\begin{aligned}
f(s+h, t)= & \int_{p}^{(s+h, t)} P d x+Q d y \\
= & \int_{p}^{(s, t)} P d x+Q d y+\int_{(s, t)}^{(s+h, t)} P d x+Q d y \\
& \text { since } y=t \text { (const.) on }(s, t) \rightarrow(s+h, t) \Longrightarrow d y=0 \\
= & f(s, t)+\int_{(s, t)}^{(s+h, t)} P d x \\
= & f(s, t)+\int_{s}^{s+h} P(x, t) d x, \\
f(s, t+k)= & \int_{p}^{(s, t+k)} P d x+Q d y \\
= & \int_{p}^{(s, t)} P d x+Q d y+\int_{(s, t)}^{(s, t+k)} P d x+Q d y \\
& \text { since } x=s(\text { const. }) \text { on }(s, t) \rightarrow(s, t+k) \Longrightarrow d x=0 \\
= & f(s, t)+\int_{(s, t)}^{(s, t+k)} Q d y \\
= & f(s, t)+\int_{t}^{t+k} Q(s, y) d y,
\end{aligned}
$$

by the Fundamental Theorem of Calculus, we have

$$
\begin{aligned}
& f_{x}(s, t)=\lim _{h \rightarrow 0} \frac{f(s+h, t)-f(s, t)}{h}=\lim _{h \rightarrow 0} \frac{\int_{s}^{s+h} P(x, t) d x}{h}=P(s, t) \\
& f_{y}(s, t)=\lim _{k \rightarrow 0} \frac{f(s, t+k)-f(s, t)}{k}=\lim _{k \rightarrow 0} \frac{\int_{t}^{t+k} Q(s, y) d y}{k}=Q(s, t)
\end{aligned}
$$

Hence

$$
F=(P, Q)=\left(f_{x}, f_{y}\right)=\nabla f \quad \text { on } D \Longrightarrow F \text { is conservative on } D .
$$

Examples

1. Evaluate $\int_{C} x^{4} d x+x y d y$, where C is the triangular curve consisting of the line segments from $(0,0)$ to $(1,0)$, from $(1,0)$ to $(0,1)$ and from $(0,1)$ to $(0,0)$.
Solution: By the Green's Theorem $\int_{C} x^{4} d x+x y d y=\int_{0}^{1} \int_{0}^{1-x}(y-0) d y d x$.
2. Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. By the Green's Theorem, the area of D is given by

$$
A(D)=\oint_{C} x d y=-\oint_{C} y d x=\frac{1}{2} \oint_{C} x d y-y d x
$$

where C is positively oriented (i.e. move along C in the direction so that D is on the left).
Use the formula to find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Solution: By the Green's Theorem, $A=\frac{1}{2} \oint_{C} x d y-y d x=\frac{1}{2} \int_{0}^{2 \pi} a b d \theta$
3. Evaluate $\int_{C} y^{2} d x+3 x y d y$, where C is the boundary of the semiannular region D in the upper half-plane between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.
Solution: By the Green's Theorem $\int_{C} y^{2} d x+3 x y d y=\iint_{D} y d A=\int_{0}^{\pi} \int_{1}^{2} r^{2} \sin \theta d r d \theta$

Curl and Divergence

Definition Let E be a subset of \mathbb{R}^{3} and let $F=\left(F_{1}, F_{2}, F_{3}\right)$ be a vector field, f be a differentiable function defined on E. Let the vector differential operator ∇ ("del") be defined by

$$
\nabla=\mathbf{i} \frac{\partial}{\partial x_{1}}+\mathbf{j} \frac{\partial}{\partial x_{2}}+\mathbf{k} \frac{\partial}{\partial x_{3}}
$$

Suppose that the partial derivatives of F_{1}, F_{2}, F_{3}, and f all exist, then the curl of F is the vector
field on \mathbb{R}^{3} defined by

$$
\begin{aligned}
\operatorname{curl} F & =\nabla \times F=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left(\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}}\right) \mathbf{i}+\left(\frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}}\right) \mathbf{j}+\left(\frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}\right) \mathbf{k} \\
& =\left(\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}}, \frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}}, \frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}\right)
\end{aligned}
$$

the gradient of f is a vector field on \mathbb{R}^{3} defined by

$$
\operatorname{grad} f=\nabla f=\frac{\partial f}{\partial x_{1}} \mathbf{i}+\frac{\partial f}{\partial x_{2}} \mathbf{j}+\frac{\partial f}{\partial x_{3}} \mathbf{k}=\left(f_{x_{1}}, f_{x_{2}}, f_{x_{3}}\right)
$$

and the divergence of F is a function on \mathbb{R}^{3} defined by

$$
\operatorname{div} F=\nabla \cdot F=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\frac{\partial F_{3}}{\partial x_{3}}, \quad \text { where } \nabla=\mathbf{i} \frac{\partial}{\partial x_{1}}+\mathbf{j} \frac{\partial}{\partial x_{2}}+\mathbf{k} \frac{\partial}{\partial x_{3}}
$$

Example Let $F(x, y, z)=x z \mathbf{i}+x y z \mathbf{j}-y^{2} \mathbf{k}$. (1) Find curl F. (2) Find div F.
Theorem Let $F=\left(F_{1}, F_{2}, F_{3}\right)$ be a vector field defined on \mathbb{R}^{3}. Suppose that the component functions have continuous partial derivatives. Then curl $F=0$ if and only if F is a conservative vector field.

Proof If

$$
\operatorname{curl} F=\left(\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}}, \frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}}, \frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}\right)=(0,0,0) \quad \text { on } \mathbb{R}^{3},
$$

the integrability conditions hold and there is a continuously differentiable function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $F=\nabla f$ on \mathbb{R}^{3}, i.e. F is a conservative vector field.
Conversely, if F is a conservative vector field such that there is a continuously differentiable function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ having has continuous $2^{\text {nd }}$ order partial derivatives on \mathbb{R}^{3}, then

$$
\operatorname{curl} F=\operatorname{curl} \nabla f=0 \quad \text { on } \mathbb{R}^{3} .
$$

Theorem Let $F=\left(F_{1}, F_{2}, F_{3}\right)$ be a vector field defined on \mathbb{R}^{3}. Suppose that the component functions have continuous $2^{\text {nd }}$ order partial derivatives. Then

$$
\operatorname{div} \operatorname{curl} F=0 \quad \text { on } \mathbb{R}^{3} .
$$

Divergence Theorem Let $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid a \leq x_{1} \leq b, c \leq x_{2} \leq d, e \leq x_{3} \leq f\right\}$ be a closed cell in \mathbb{R}^{3} and let $F=\left(F_{1}, F_{2}, F_{3}\right)$ be a continuous vector field on W. Suppose that $\frac{\partial F_{1}}{\partial x_{1}}$, $\frac{\partial F_{2}}{\partial x_{2}}$ and $\frac{\partial F_{3}}{\partial x_{3}}$ are continuous on an open set U containing W. Then

$$
\iiint_{W} \operatorname{div} F d V=\iint_{\partial W} F \cdot n d A
$$

where $n=n(p)$ denotes the unit outward normal vector to ∂W at $p \in \partial W$.
Proof Since the boundary ∂W of W consists of 6 faces $S_{1} \cup S_{2} \cup \cdots \cup S_{6}$, where

$$
\begin{aligned}
& S_{1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in W \mid x_{1}=a\right\} \Longrightarrow \text { if } p \in S_{1} \text { then } n(p)=(-1,0,0) \\
& S_{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in W \mid x_{1}=b\right\} \Longrightarrow \text { if } p \in S_{2} \text { then } n(p)=(1,0,0) \\
& S_{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in W \mid x_{2}=c\right\} \Longrightarrow \text { if } p \in S_{3} \text { then } n(p)=(0,-1,0) \\
& S_{4}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in W \mid x_{2}=d\right\} \Longrightarrow \text { if } p \in S_{4} \text { then } n(p)=(0,1,0) \\
& S_{5}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in W \mid x_{3}=e\right\} \Longrightarrow \text { if } p \in S_{5} \text { then } n(p)=(0,0,-1) \\
& S_{6}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in W \mid x_{3}=f\right\} \Longrightarrow \text { if } p \in S_{6} \text { then } n(p)=(0,0,1)
\end{aligned}
$$

we have

$$
\begin{aligned}
& \iiint_{W} \operatorname{div} F d V=\iiint_{W}\left(\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\frac{\partial F_{3}}{\partial x_{3}}\right) d V \\
= & \int_{e}^{f} \int_{c}^{d} \int_{a}^{b} \frac{\partial F_{1}}{\partial x_{1}} d x_{1} d x_{2} d x_{3}+\int_{e}^{f} \int_{a}^{b} \int_{c}^{d} \frac{\partial F_{2}}{\partial x_{2}} d x_{2} d x_{1} d x_{3}+\int_{a}^{b} \int_{c}^{d} \int_{e}^{f} \frac{\partial F_{3}}{\partial x_{3}} d x_{3} d x_{2} d x_{1} \\
= & \int_{e}^{f} \int_{c}^{d}\left(F_{1}\left(b, x_{2}, x_{3}\right)-F_{1}\left(a, x_{2}, x_{3}\right)\right) d x_{2} d x_{3}+\int_{e}^{f} \int_{a}^{b}\left(F_{2}\left(x_{1}, d, x_{3}\right)-F_{2}\left(x_{1}, c, x_{3}\right)\right) d x_{1} d x_{3} \\
+ & \int_{a}^{b} \int_{c}^{d}\left(F_{3}\left(x_{1}, x_{2}, f\right)-F_{3}\left(x_{1}, x_{2}, e\right)\right) d x_{2} d x_{1} \\
= & \iint_{S_{2}} F_{1}\left(b, x_{2}, x_{3}\right) d x_{2} d x_{3}-\iint_{S_{1}} F_{1}\left(a, x_{2}, x_{3}\right) d x_{2} d x_{3}+\iint_{S_{4}} F_{2}\left(x_{1}, d, x_{3}\right) d x_{1} d x_{3} \\
& \left.-\iint_{S_{3}} F_{2}\left(x_{1}, c, x_{3}\right) d x_{1} d x_{3}+\iint_{S_{6}} F_{3}\left(x_{1}, x_{2}, f\right) d x_{2} d x_{1}-\iint_{S_{5}} F_{3}\left(x_{1}, x_{2}, e\right)\right) d x_{2} d x_{1} \\
= & \iint_{S_{2}} F \cdot(1,0,0) d x_{2} d x_{3}+\iint_{S_{1}} F \cdot(-1,0,0) d x_{2} d x_{3}+\iint_{S_{4}} F \cdot(0,1,0) d x_{1} d x_{3} \\
+ & \iint_{S_{3}} F \cdot(0,-1,0) d x_{1} d x_{3}+\iint_{S_{6}} F \cdot(0,0,1) d x_{2} d x_{1}+\iint_{S_{5}} F \cdot(0,0,-1) d x_{2} d x_{1} \\
= & \iint_{S_{2} \cup S_{1} \cup S_{4} \cup S_{3} \cup S_{6} \cup S_{5}} F \cdot n d A=\iint_{\partial W} F \cdot n d A
\end{aligned}
$$

Remark In general, if R is a regular region in \mathbb{R}^{n} with piecewise smooth boundary ∂R, and if $F=\left(F_{1}, \ldots, F_{n}\right)$ is a continuously differentiable vector field on $R \cup \partial R$, then

$$
\int_{R} \operatorname{div} F d V=\int_{\partial R} F \cdot \nu d S
$$

where $\nu=\nu(x)$ denotes the unit outward normal vector to ∂R at $x \in \partial R$ and $d S_{x}$ denotes the volume element of ∂R at $x \in \partial R$.
Corollary (Green's Theorem) Let R be a regular region in $\mathbb{R}^{2}=x_{1} x_{2}$-plane with piecewise smooth boundary ∂R, and let $F=\left(F_{1}, F_{2}\right): R \cup \partial R \rightarrow \mathbb{R}^{2}$ be a continuously differentiable vector field on $R \cup \partial R$. Then

$$
\int_{\partial R} F \cdot d x=\iint_{R}\left(\frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}\right) d A, \quad \text { where } d x=\left(d x_{1}, d x_{2}\right)
$$

Proof Note that if $r(t)=\left(x_{1}(t), x_{2}(t)\right):[a, b] \rightarrow \partial R$ is a parametrization (or coordinate functions) of ∂R, then

$$
\int_{\partial R} F \cdot d x=\int_{r([a, b])}\left(F_{1}, F_{2}\right) \cdot\left(d x_{1}, d x_{2}\right)=\int_{a}^{b}\left(F_{1}, F_{2}\right) \cdot\left(\frac{d x_{1}}{d t}, \frac{d x_{2}}{d t}\right) d t
$$

Since $r^{\prime}(t)=\left(\frac{d x_{1}}{d t}, \frac{d x_{2}}{d t}\right)$ is tangent to ∂R at $p=r(t)$, the vector $\nu(p)=\left(\frac{d x_{2}}{d t},-\frac{d x_{1}}{d t}\right)$ is a normal vector there.
Let $G=\left(G_{1}, G_{2}\right)=\left(F_{2},-F_{1}\right)$. Then G is a continuously differentiable vector field on $R \cup \partial R$, and

$$
\int_{\partial R} F \cdot d x=\int_{\partial R}\left(F_{1}, F_{2}\right) \cdot\left(d x_{1}, d x_{2}\right)=\int_{\partial R}\left(F_{2},-F_{1}\right) \cdot\left(d x_{2},-d x_{1}\right)=\int_{a}^{b}\left(G_{1}, G_{2}\right) \cdot \nu d t
$$

and, by the divergence theorem, we have

$$
\int_{a}^{b}\left(G_{1}, G_{2}\right) \cdot \nu d t=\int_{\partial R} G \cdot \nu=\iint_{R} \operatorname{div} G d A=\iint_{R}\left(\frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}\right) d A
$$

Definition If F is a continuous vector field defined on an oriented surface S with unit normal vector n, then the surface integral of F over S is

$$
\iint_{S} F \cdot d \mathbf{S}=\iint_{S} F \cdot n d S=\text { the flux of } F \text { across } S
$$

where $d \mathbf{S}$ is the vector area element of $S, d S$ is the area element of $S, n=n(p)$ is the unit outward normal vector to S at p. This integral is also called the flux of F across S.
Stokes' Theorem Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let F be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^{3} that contains S. Then

$$
\int_{C} F \cdot d r=\iint_{S} \operatorname{curl} F \cdot d \mathbf{S}=\iint_{R}(\nabla \times F) \cdot \frac{\partial r}{\partial s_{1}} \times \frac{\partial r}{\partial s_{2}} d A,
$$

where

- $r\left(s_{1}, s_{2}\right)=\left(x_{1}\left(s_{1}, s_{2}\right), x_{2}\left(s_{1}, s_{2}\right), x_{3}\left(s_{1}, s_{2}\right)\right): R \rightarrow S$ is a smooth parametrization that maps a simple, closed, piecewise-smooth bounded region R, in $s_{1} s_{2}$-plane, to a surface S in $x_{1} x_{2} x_{3^{-}}$ space and $r: \partial R \rightarrow C$ maps the boundary ∂R of R onto C,
- $d r=\frac{\partial r}{\partial s_{1}} d s_{1}+\frac{\partial r}{\partial s_{2}} d s_{2}$ is the tangent vector length element of C,
- $d \mathbf{S}$ is the vector area element of S and $d A$ is the area element of R.

Remark If C is a smooth simple closed curve given by the vector equation

$$
r(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}=(x(t), y(t), 0) \quad \text { for } a \leq t \leq b
$$

then

$$
T(t)=\frac{x^{\prime}(t)}{\left|r^{\prime}(t)\right|} \mathbf{i}+\frac{y^{\prime}(t)}{\left|r^{\prime}(t)\right|} \mathbf{j} \quad \text { and } \quad n(t)=\frac{y^{\prime}(t)}{\left|r^{\prime}(t)\right|} \mathbf{i}-\frac{x^{\prime}(t)}{\left|r^{\prime}(t)\right|} \mathbf{j}
$$

are respectively the unit tangent vector and the outward unit normal vector to C at $r(t)$, and

$$
\begin{aligned}
& n(t) \times T(t)=\frac{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}{\left|r^{\prime}(t)\right|^{2}}(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \text { for each } a \leq t \leq b \\
\Longrightarrow & D \subset x y \text {-plane } \Longrightarrow d z=0 \text { on } D,
\end{aligned}
$$

Since

$$
\operatorname{curl} F=\left(\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}}, \frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}}, \frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}}\right)
$$

we have

$$
\begin{aligned}
\iint_{D} \operatorname{curl} F= & \mathbf{i} \iint_{D}\left[\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right] d y d z+\mathbf{j} \iint_{D}\left[\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right] d x d z+\mathbf{k} \iint_{D}\left[\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right] d x d y \\
= & \left(\iint_{D}\left[\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right] d x d y\right) \mathbf{k} \quad \text { since } d z=0 \text { on } D \\
= & \left(\oint_{C} F_{1} d x+F_{2} d y\right) \mathbf{k} \text { by the Green's Theorem } \\
= & \left(\oint_{C} F(r) \cdot d r\right) n(t) \times T(t) \\
& \quad \text { perpendicular to the plane spanned by } T, n
\end{aligned}
$$

so, by setting $N=T \times n$ along C, we obtain a positively oriented basis $\{N, n, T\}$ for \mathbb{R}^{3} and note that the curl F at a point $p=(x, y, z)$ can be defined by

$$
\operatorname{curl} F(p)=\lim _{A \rightarrow 0} \frac{1}{A} \iint_{D} \operatorname{curl} F=\lim _{A \rightarrow 0}\left(\frac{1}{A} \oint_{C} F(r) \cdot d r\right) N \perp \text { the plane containing } C
$$

where A is the area of D and $\oint_{C} F(r) \cdot d r$, a line integral along the boundary of D, measures the velocity of particles move around the axis.
Proof of Stokes' Theorem Since $C=r(\partial R)$ and $d r=\frac{\partial r}{\partial s_{1}} d s_{1}+\frac{\partial r}{\partial s_{2}} d s_{2}$, we have

$$
\int_{C} F \cdot d r=\int_{\partial R}\left(F \cdot \frac{\partial r}{\partial s_{1}} d s_{1}+F \cdot \frac{\partial r}{\partial s_{2}} d s_{2}\right) \quad \text { by the definition of line integral. }
$$

Setting

$$
G_{1}=F \cdot \frac{\partial r}{\partial s_{1}} \quad \text { and } \quad G_{2}=F \cdot \frac{\partial r}{\partial s_{2}}
$$

and by the Green's Theorem, we have

$$
\int_{C} F \cdot d r=\int_{\partial R}\left(G_{1} d s_{1}+G_{2} d s_{2}\right)=\iint_{R}\left(\frac{\partial G_{2}}{\partial s_{1}}-\frac{\partial G_{1}}{\partial s_{2}}\right) d s_{1} d s_{2}
$$

On the other hand, since

$$
\iint_{S} \operatorname{curl} F \cdot d \mathbf{S}=\iint_{R} \operatorname{curl} F \cdot \frac{\partial r}{\partial s_{1}} \times \frac{\partial r}{\partial s_{2}} d s_{1} d s_{2}
$$

and

$$
\begin{aligned}
& \operatorname{curl} F \cdot \frac{\partial r}{\partial s_{1}} \times \frac{\partial r}{\partial s_{2}}=\left|\begin{array}{ccc}
\frac{\partial F_{3}}{\partial x_{2}}-\frac{\partial F_{2}}{\partial x_{3}} & \frac{\partial F_{1}}{\partial x_{3}}-\frac{\partial F_{3}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{1}}-\frac{\partial F_{1}}{\partial x_{2}} \\
\frac{\partial x_{1}}{\partial s_{1}} & \frac{\partial x_{2}}{\partial s_{1}} & \frac{\partial x_{3}}{\partial s_{1}} \\
\frac{\partial x_{1}}{\partial s_{2}} & \frac{\partial x_{2}}{\partial s_{2}} & \frac{\partial x_{3}}{\partial s_{2}}
\end{array}\right| \\
&=\sum_{i, j=1}^{3}\left(\frac{\partial F_{j}}{\partial x_{i}}-\frac{\partial F_{i}}{\partial x_{j}}\right) \frac{\partial x_{i}}{\partial s_{1}} \frac{\partial x_{j}}{\partial s_{2}} \\
& \text { by the definition of determinant } \\
&=\sum_{i, j=1}^{3} \frac{\partial F_{j}}{\partial x_{i}} \frac{\partial x_{i}}{\partial s_{1}} \frac{\partial x_{j}}{\partial s_{2}}-\sum_{i, j=1}^{3} \frac{\partial F_{i}}{\partial x_{j}} \frac{\partial x_{j}}{\partial s_{2}} \frac{\partial x_{i}}{\partial s_{1}} \\
&=\frac{\partial F}{\partial s_{1}} \cdot \frac{\partial r}{\partial s_{2}}-\frac{\partial F}{\partial s_{2}} \cdot \frac{\partial r}{\partial s_{1}} \\
& \text { by the Chain Rule } \\
&=\frac{\partial G_{2}}{\partial s_{1}}-\frac{\partial G_{1}}{\partial s_{2}}
\end{aligned}
$$

we have

$$
\iint_{S} \operatorname{curl} F \cdot d \mathbf{S}=\iint_{R}\left(\frac{\partial G_{2}}{\partial s_{1}}-\frac{\partial G_{1}}{\partial s_{2}}\right) d s_{1} d s_{2}=\int_{C} F \cdot d r
$$

Example 1. Evaluate $\int_{C} F \cdot d r$, where $F(x, y, z)=-y^{2} \mathbf{i}+x \mathbf{j}+z^{2} \mathbf{k}$ and C is the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$. (Orient C to be counterclockwise when viewed from above.)

Solution: curl $F=(1+2 y) \mathbf{k}, S=\{z=g(x, y)=2-y\}$, curl $F \cdot d S=(0,0,1+2 y)$. $\left(-g_{x},-g_{y}, 1\right) d A=(1+2 y) d A$ and $\int_{C} F \cdot d r=\iint_{S} \operatorname{curl} F \cdot d S=\iint_{D}(1+2 y) d A=\int_{0}^{2 \pi} \int_{0}^{1}(1+$ $2 r \sin \theta) r d r d \theta$.
Example 2. Find the flux of the vector field $F(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$ over the unit sphere

$$
x^{2}+y^{2}+z^{2}=1
$$

Solution: $r(\phi, \theta)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi),(\phi, \theta) \in D=\{0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi\}$. Then $\iint_{S} F \cdot d \mathbf{S}=\iint_{D} F \cdot r_{\phi} \times r_{\theta} d A=4 \pi / 3$.

