Line Integrals

Definition Let *E* be a subset in \mathbb{R}^m . A vector field on *E* is a vector (or vector-valued) function $F: E \to \mathbb{R}^n$ defined by

$$F(x) = (F_1(x), F_2(x), \dots, F_n(x)) \in \mathbb{R}^n$$
 for each $x = (x_1, x_2, \dots, x_m) \in E$.

Definition Let C be a plane curve defined by the parametric equations $r(t) = (x(t), y(t)), t \in [a, b]$. Then

- C is called a smooth curve if r'(t) is continuous and $r'(t) \neq 0$ for all $t \in [a, b]$.
- C is called a piecewise smooth curve if there exists a partition

$$P = \{a = t_0 < t_1 < \dots < t_n = b\}$$

such that $r'(t) \neq 0$ is continuous for all $t \in (t_{i-1}, t_i)$ and $\lim_{t \to t_i^{\pm}} r'(t)$ exists for each $1 \leq i \leq n$.

Definition Let C be a smooth plane curve given by the vector function r(t) = (x(t), y(t)), $t \in [a, b]$, let f be a function defined on C and let $s(t) = \int_a^t |r'(u)| du$. Then the line integral of f along C is defined by

$$\int_C f(x,y) \, ds = \int_a^b f(r(t)) \, |r'(t)| \, dt = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \, \Delta s_i \quad \text{if this limit exists}$$

where $ds = |r'(t)| dt = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$, $P_i^*(x_i^*, y_i^*) = r(t_i^*) \in \widehat{P_{i-1}P_i}$ and Δs_i is the length of the subarc $\widehat{P_{i-1}P_i}$ from $P_{i-1} = r(t_{i-1})$ to $P_i = r(t_i)$.

In general, if C is a (piecewise) smooth curve in \mathbb{R}^m given by the vector function $r(t) = (x_1(t), \ldots, x_m(t)), t \in [a, b]$ and

Calculus

• if f is a function (scalar field) defined on C, then the line integral of f along C is defined by

$$\int_C f(x_1, x_2, \dots, x_m) \, ds = \int_a^b f(r(t)) \, |r'(t)| \, dt$$
$$= \lim_{n \to \infty} \sum_{i=1}^n f(x_{1i}^*, x_{2i}^*, \dots, x_{mi}^*) \, \Delta s_i \quad \text{if this limit exists.}$$

• if $F = (F_1, \ldots, F_m)$ is a continuous vector field defined on C, then the line integral of F along C is defined by

$$\int_C F(r) \cdot dr = \int_a^b F(r(t)) \cdot r'(t) \, dt,$$

where $F(r(t)) \cdot r'(t)$ denotes the inner product of $F(r(t)), r'(t) \in \mathbb{R}^m$.

Remarks Let C (piecewise) smooth curve defined by $r(t), t \in [a, b]$.

(a) If $\phi : [c, d] \to [a, b]$ is a continuously differentiable, orientation preserving onto map such that $\phi'(u) > 0$, $\phi(c) = a$, $\phi(d) = b$, then C is given by the vector function R(u) defined by

$$C : R(u) = r(\phi(u)), \quad u \in [c, d],$$

and since

$$\int_{C} F(R) \cdot dR = \int_{c}^{d} F(R(u)) \cdot R'(u) du$$

=
$$\int_{c}^{d} \left[F(r(\phi(u))) \cdot r'(\phi(u)) \right] \phi'(u) du$$

Set $t = \phi(u) \implies dt = \phi'(u) du, \ \phi(c) = a, \ \phi(d) = b$
=
$$\int_{a}^{b} \left[F(r(t)) \cdot r'(t) \right] dt = \int_{C} F(r) \cdot dr$$

the line integral is left invariant by every orientation-preserving change of parameter. (b) For $u \in [a, b]$, let $\phi(u) = a + b - u$ and let -C be a curve defined by

$$-C: \quad R(u) = r(\phi(u)) = r(a+b-u) \quad \text{for } u \in [a,b].$$

Since $\phi : [a, b] \to [a, b]$ is onto, $\phi'(u) = -1$, $\phi(a) = b$ and $\phi(b) = a$, the curve -C denotes the same curve traversed in the opposite direction and

$$\begin{split} \int_{-C} F(R) \cdot dR &= \int_{a}^{b} F(R(u)) \cdot R'(u) \, du \\ &= \int_{a}^{b} \left[F(r(\phi(u))) \cdot r'(\phi(u)) \right] \phi'(u) \, du \\ &\text{Set } t = \phi(u) \implies dt = \phi'(u) \, du, \, \phi(a) = b, \, \phi(b) = a \\ &= \int_{b}^{a} \left[F(r(t)) \cdot r'(t) \right] dt = -\int_{a}^{b} \left[F(r(t)) \cdot r'(t) \right] dt = -\int_{C} F(r) \cdot dr \end{split}$$

Examples

Calculus

- 1. Evaluate $\int_C (2+x^2y) ds$, where C is the upper half of the unit circle $x^2 + y^2 = 1$.
- 2. The center of mass of the wire C with density function $\rho(x, y), (x, y) \in C$, is located at the point

$$\bar{x} = \frac{1}{m} \int_C x \rho(x, y) \, ds \quad \bar{y} = \frac{1}{m} \int_C y \rho(x, y) \, ds, \quad \text{where} \quad m = \int_C \rho(x, y) \, ds = \text{total mass of } C.$$

- 3. Evaluate $\int_{C_1} y^2 dx + x dy$, where C_1 is the line segment from (-5, -3) to (0, 2), and evaluate $\int_{C_2} y^2 dx + x dy$, where C_2 is the arc of the parabola $x = 4 y^2$ from (-5, -3) to (0, 2).
- 4. Evaluate $\int_C y \sin z \, ds$, where C is the circular helix given by the equations $x = \cos t$, $y = \sin t$, z = t, $0 \le t \le 2\pi$.
- 5. Find the work done $\int_C F(r) \cdot dr$ by the force field $F(x, y) = x^2 \mathbf{i} xy \mathbf{j}$ in moving a particle along the quarter-circle C: $r(t) = \cos t \mathbf{i} + \sin t \mathbf{j}, \ 0 \le t \le \pi/2$.

Definition Let E be a subset of \mathbb{R}^n and let $F = (F_1, F_2, \ldots, F_n) : E \to \mathbb{R}^n$ be a vector field defined on E. Then F is called a conservative vector field if there exists a function $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$F(x) = \nabla f(x)$$
 for all $x \in E$.

Note that if F is a continuously differentiable conservative vector field, then f has continuous 2^{nd} order partial derivatives $f_{x_ix_j} = f_{x_jx_i}$ and

$$\frac{\partial F_i}{\partial x_j} = f_{x_i x_j} = f_{x_j x_i} = \frac{\partial F_j}{\partial x_i} \implies \frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i} \quad \text{for each } 1 \le i, j \le n \text{ (integrability conditions)}$$

In this situation, the function f is called a potential function for F.

Definition Let F be a continuous vector field defined on D, and let C_1 and C_2 be paths in D having the same initial points and the same terminal points. Then the line integral $\int_C F \cdot dr$ is called independent of path if

$$\int_{C_1} F \cdot dr = \int_{C_2} F \cdot dr$$

Fundamental Theorem for Line Integrals Let U be an open subset of \mathbb{R}^m , let $f : U \to \mathbb{R}$ be a continuously differentiable scalar field (function) and let $C : r = r(u), u \in [a, b]$ be a (piecewise) smooth curve that begins at p = r(a) and ends at q = r(b). Then the line integral of (a conservative field) ∇f along C satisfies that

$$\int_C \nabla f(r) \cdot dr = f(r(b)) - f(r(a)) = f(q) - f(p)$$

and is independent of the choice of paths in U joining from p to q.

Proof

Case 1: If C is smooth, then

$$\int_C \nabla f(r) \cdot dr = \int_a^b \nabla f(r(u)) \cdot r'(u) \, du = \int_a^b \left[\frac{d}{du} f(r(u)) \right] \, du = f(r(b)) - f(r(a)).$$

Case 2: If C a (piecewise) smooth and $\{a = a_0 < a_1 < \cdots < a_{n-1} < a_n = b\}$ is a partition of [a, b] such that

$$C = \bigcup_{i=1}^{n} C_i \quad \text{where} \quad C_i = \{r(t) \mid t \in [a_{i-1}, a_i]\} \text{ is smooth for } 1 \le i \le n,$$

then

$$\int_{C} \nabla f(r) \cdot dr = \int_{\bigcup_{i=1}^{n} C_{i}} \nabla f(r) \cdot dr = \sum_{i=1}^{n} \int_{C_{i}} \nabla f(r) \cdot dr = \sum_{i=1}^{n} \int_{a_{i-1}}^{a_{i}} \nabla f(r(u)) \cdot r'(u) \, du$$

$$\stackrel{\text{Case 1}}{=} \sum_{i=1}^{n} f(r(a_{i})) - f(r(a_{i-1})) = f(r(b)) - f(r(a)).$$

Remarks

(a) This is a generalization of the Fundamental Theorem of Calculus since if $g : [a, b] \to \mathbb{R}$ is a continuous function with an anti-derivative G(x) on (a, b) and if C is the line segment given by r(x) = x, $x \in [a, b] \subset \mathbb{R}$, then

$$G(b) - G(a) = \int_C \nabla G(r) \cdot dr = \int_a^b \frac{d}{dx} G(x) \, dx = \int_a^b g(x) \, dx$$

(b) If $C : r = r(u), u \in [a, b]$ is a (piecewise) smooth closed curve and if f is continuously differentiable on an open set U containing C, then

$$\int_C \nabla f(r) \cdot dr = f(r(b)) - f(r(a)) = 0 \quad \text{since } r(b) = r(a).$$

This implies that if $F = \nabla f$ is conservative and continuous in U, the line integral $\int_C F(r) \cdot dr = 0$ along any (piecewise) smooth closed curve C in U.

Examples

- 1. Find the work done by the gravitational field $F(X) = -\frac{mMG}{|X|^3}X$, $X = (x, y, z) \in \mathbb{R}^3$, in moving a particle with mass *m* from the point (3, 4, 12) to the point (2, 2, 0) along a piecewise-smooth curve *C*.
- 2. Determine whether or not the given vector field is conservative.
 - $F(x,y) = (x-y)\mathbf{i} + (x-2)\mathbf{j}$.
 - $F(x,y) = (3+2xy)\mathbf{i} + (x^2 3y^2)\mathbf{j}.$

Definition A continuous curve C : r = r(u) $u \in [a, b]$ is called simple if

$$r(u) \neq r(t)$$
 for all $a \leq t < u < b \iff$ for all $u \neq t \in [a, b)$.

A Jordan curve is a plane curve that is both closed and simple.

Page 4

Definition A region D is called (path) connected if any two points in D can be joined by a path that lies in D, i.e. D is (path) connected if for all $p, q \in D$, there exists a continuous map $r : [a, b] \to D$ from [a, b] into D such that r(a) = p and r(b) = q.

Definition Let D be a region in the plane. Then D is called simply-connected if every simple closed curve in D encloses only points that are in D.

Remark If $F = \nabla f$ is conservative and continuous in D, and if C_1 and C_2 are paths in D having the same initial points and the same terminal points. Then $C_1 \cup (-C_2)$ is a closed curve in D, and

$$0 = \int_{C_1 \cup (-C_2)} F \cdot dr = \int_{C_1} F \cdot dr + \int_{-C_2} F \cdot dr = \int_{C_1} F \cdot dr - \int_{C_2} F \cdot dr$$
$$\implies \int_{C_1} F \cdot dr = \int_{C_2} F \cdot dr \text{ (independent of path)}$$

Green's Theorem Let F = (P, Q) be a vector field on an simply-connected region Ω . Suppose that P and Q have continuous first-order partial derivatives on an open set that contains Ω , then

$$\iint_{\Omega} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx \, dy = \oint_{C} P dx + Q dy,$$

where the boundary $C = \partial \Omega$ is oriented in the positive direction such that Ω is on the lefthand-side when traversing along C, and \oint_C denotes the line integral along C in the positively orientation.

Proof Suppose that Ω is an elementary region given by

$$\{(x,y) \mid a \le x \le b, \, \phi_1(x) \le y \le \phi_2(x)\} \text{ or } \{(x,y) \mid \psi_1(y) \le x \le \psi_2(y), \, c \le x \le d\},\$$

 Ω is an elementary region: it is both of Type I and Type II

such that the boundary $\partial \Omega = C = C_1 \cup C_2 = C_3 \cup C_4$, where

 $\begin{array}{rcl} C_1 &=& \{(x,y) \mid y = \phi_1(x), \ a \leq x \leq b\}, & C_2 = \{(x,y) \mid y = \phi_2(x), \ a \leq x \leq b\}, \\ C_3 &=& \{(x,y) \mid x = \psi_1(y), \ c \leq y \leq d\}, & C_4 = \{(x,y) \mid x = \psi_2(y), \ c \leq y \leq d\}. \end{array}$

Study Guide 14 (Continued)

Since

$$\iint_{\Omega} \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} Q(\psi_{2}(y), y) dy - \int_{c}^{d} Q(\psi_{1}(y), y) dy$$
$$\iint_{\Omega} -\frac{\partial P}{\partial y} dy dx = -\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} \frac{\partial P}{\partial y} dy dx = \int_{a}^{b} P(x, \phi_{1}(x)) dx - \int_{a}^{b} P(x, \phi_{2}(x)) dx$$

and

$$\oint_{C} Q \, dy = \int_{C_{4} \cup (-C_{3})} Q \, dy = \int_{C_{4}} Q \, dy - \int_{C_{3}} Q \, dy = \int_{c}^{d} Q(\psi_{2}(y), y) \, dy - \int_{c}^{d} Q(\psi_{1}(y), y) \, dy$$

$$\oint_{C} P \, dx = \int_{C_{1} \cup (-C_{2})} P \, dx = \int_{C_{1}} P \, dx - \int_{C_{2}} P \, dx = \int_{a}^{b} P(x, \phi_{1}(x)) \, dx - \int_{a}^{b} P(x, \phi_{2}(x)) \, dx$$

we have

$$\iint_{\Omega} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx \, dy = \oint_{C} P dx + Q dy$$

Remark Suppose that D_1 and D_2 are simply-connected regions with boundaries $\partial D_1 = C_3 \cup C_1$ and $\partial D_2 = C_2 \cup (-C_3)$ respectively and suppose that $D = D_1 \cup D_2$ has the boundary $C = \partial D = C_1 \cup C_2$.

Since

$$\iint_{D} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx = \iint_{D_{1} \cup D_{2}} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx = \iint_{D_{1}} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx + \iint_{D_{2}} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx$$
$$\oint_{C} P \, dx + Q \, dy = \oint_{C_{1} \cup C_{2} \cup C_{3} \cup (-C_{3})} P \, dx + Q \, dy = \oint_{C_{1} \cup C_{3}} P \, dx + Q \, dy + \oint_{C_{2} \cup (-C_{3})} P \, dx + Q \, dy$$

and since D_1 , D_2 are simple regions as in the preceding proof, we have

$$\iint_{D_1} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx = \oint_{C_1 \cup C_3} P dx + Q dy$$
$$\iint_{D_2} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx = \oint_{C_2 \cup (-C_3)} P dx + Q dy$$

This proves the Green's Theorem on a more general region D

$$\iint_{D} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx \, dy = \oint_{C_1 \cup C_2} P dx + Q dy = \oint_{\partial D} P dx + Q dy.$$

Theorem Let F = (P, Q) be a vector field on a simply-connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} \quad \text{throughout } D \quad \text{(integrability condition)}$$

Then F is conservative, i.e. there is a continuously differentiable function $f: D \to \mathbb{R}$ such that $F = \nabla f$ on D.

Proof Fix a point $p = (a, b) \in D$. For any $(s, t) \in D$, let $f : D \to \mathbb{R}$ be defined by

$$f(s,t) = \int_C P \, dx + Q \, dy$$
, where C is a piecewise smooth path in D from p to (s,t) .

This is well defined since if C_1 is another piecewise smooth path in D from p to (s, t) such that $C \cup (-C_1)$ is a simple closed curve enclosing a region $E \subset D$. By the Green's Theorem, we have

$$\int_{C} P \, dx + Q \, dy - \int_{C_1} P \, dx + Q \, dy = \oint_{C \cup (-C_1)} P \, dx + Q \, dy = \iint_{E} \left[\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right] dx \, dy = 0,$$

and

$$\int_{C} P \, dx + Q \, dy = \int_{C_1} P \, dx + Q \, dy \quad \text{(independent of path)}$$

Hence we may simply rewrite the definition of f at each point $(s,t) \in D$ as follows

$$f(s,t) = \int_{p}^{(s,t)} P \, dx + Q \, dy,$$

where the line integral is integrated along any piecewise smooth path in D from p to (s,t). For each $(s,t) \in D$ and for any sufficiently small h, k such that $(s+h, t+k) \in D$, since

$$\begin{split} f(s+h,t) &= \int_{p}^{(s+h,t)} P \, dx + Q \, dy \\ &= \int_{p}^{(s,t)} P \, dx + Q \, dy + \int_{(s,t)}^{(s+h,t)} P \, dx + Q \, dy \\ &= \text{since } y = t \; (\text{const.}) \; \text{on} \; (s,t) \to (s+h,t) \implies dy = 0 \\ &= f(s,t) + \int_{(s,t)}^{(s+h,t)} P \, dx \\ &= f(s,t) + \int_{s}^{s+h} P(x,t) \, dx, \\ f(s,t+k) &= \int_{p}^{(s,t+k)} P \, dx + Q \, dy \\ &= \int_{p}^{(s,t+k)} P \, dx + Q \, dy + \int_{(s,t)}^{(s,t+k)} P \, dx + Q \, dy \\ &= \inf(s,t) + \int_{(s,t+k)}^{(s,t+k)} Q \, dy \\ &= f(s,t) + \int_{t}^{(s,t+k)} Q \, dy, \end{split}$$

by the Fundamental Theorem of Calculus, we have

$$f_x(s,t) = \lim_{h \to 0} \frac{f(s+h,t) - f(s,t)}{h} = \lim_{h \to 0} \frac{\int_s^{s+h} P(x,t) \, dx}{h} = P(s,t)$$

$$f_y(s,t) = \lim_{k \to 0} \frac{f(s,t+k) - f(s,t)}{k} = \lim_{k \to 0} \frac{\int_t^{t+k} Q(s,y) \, dy}{k} = Q(s,t)$$

Hence

 $F = (P, Q) = (f_x, f_y) = \nabla f$ on $D \implies F$ is conservative on D.

Examples

- 1. Evaluate $\int_C x^4 dx + xy dy$, where C is the triangular curve consisting of the line segments from (0,0) to (1,0), from (1,0) to (0,1) and from (0,1) to (0,0). Solution: By the Green's Theorem $\int_C x^4 dx + xy dy = \int_0^1 \int_0^{1-x} (y-0) dy dx$.
- 2. Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. By the Green's Theorem, the area of D is given by

$$A(D) = \oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx,$$

where *C* is positively oriented (i.e. move along *C* in the direction so that *D* is on the left). Use the formula to find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Solution: By the Green's Theorem, $A = \frac{1}{2} \oint_C x \, dy - y \, dx = \frac{1}{2} \int_0^{2\pi} a \, b \, d\theta$

3. Evaluate $\int_C y^2 dx + 3xy dy$, where *C* is the boundary of the semiannular region *D* in the upper half-plane between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$. Solution: By the Green's Theorem $\int_C y^2 dx + 3xy dy = \iint_D y dA = \int_0^{\pi} \int_1^2 r^2 \sin \theta \, dr \, d\theta$

Curl and Divergence

Definition Let E be a subset of \mathbb{R}^3 and let $F = (F_1, F_2, F_3)$ be a vector field, f be a differentiable function defined on E. Let the vector differential operator ∇ ("del") be defined by

$$\nabla = \mathbf{i} \frac{\partial}{\partial x_1} + \mathbf{j} \frac{\partial}{\partial x_2} + \mathbf{k} \frac{\partial}{\partial x_3}$$

Suppose that the partial derivatives of F_1 , F_2 , F_3 , and f all exist, then the curl of F is the vector

field on \mathbb{R}^3 defined by

$$\operatorname{curl} F = \nabla \times F = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \\ F_1 & F_2 & F_3 \end{vmatrix}$$
$$= \left(\frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3} \right) \mathbf{i} + \left(\frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} \right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) \mathbf{k}$$
$$= \left(\frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3} , \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} , \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right)$$

the gradient of f is a vector field on \mathbb{R}^3 defined by

grad
$$f = \nabla f = \frac{\partial f}{\partial x_1} \mathbf{i} + \frac{\partial f}{\partial x_2} \mathbf{j} + \frac{\partial f}{\partial x_3} \mathbf{k} = (f_{x_1}, f_{x_2}, f_{x_3})$$

and the divergence of F is a function on \mathbb{R}^3 defined by

$$\operatorname{div} F = \nabla \cdot F = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \frac{\partial F_3}{\partial x_3}, \quad \text{where } \nabla = \mathbf{i} \frac{\partial}{\partial x_1} + \mathbf{j} \frac{\partial}{\partial x_2} + \mathbf{k} \frac{\partial}{\partial x_3}$$

Example Let $F(x, y, z) = xz \mathbf{i} + xyz \mathbf{j} - y^2 \mathbf{k}$. (1) Find curl *F*. (2) Find div *F*.

Theorem Let $F = (F_1, F_2, F_3)$ be a vector field defined on \mathbb{R}^3 . Suppose that the component functions have continuous partial derivatives. Then curl F = 0 if and only if F is a conservative vector field.

Proof If

$$\operatorname{curl} F = \left(\frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3}, \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1}, \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2}\right) = (0, 0, 0) \quad \text{on } \mathbb{R}^3,$$

the integrability conditions hold and there is a continuously differentiable function $f : \mathbb{R}^3 \to \mathbb{R}$ such that $F = \nabla f$ on \mathbb{R}^3 , i.e. F is a conservative vector field.

Conversely, if F is a conservative vector field such that there is a continuously differentiable function $f : \mathbb{R}^3 \to \mathbb{R}$ having has continuous 2^{nd} order partial derivatives on \mathbb{R}^3 , then

$$\operatorname{curl} F = \operatorname{curl} \nabla f = 0 \quad \text{on } \mathbb{R}^3.$$

Theorem Let $F = (F_1, F_2, F_3)$ be a vector field defined on \mathbb{R}^3 . Suppose that the component functions have continuous 2nd order partial derivatives. Then

div curl
$$F = 0$$
 on \mathbb{R}^3 .

Divergence Theorem Let $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid a \leq x_1 \leq b, c \leq x_2 \leq d, e \leq x_3 \leq f\}$ be a closed cell in \mathbb{R}^3 and let $F = (F_1, F_2, F_3)$ be a continuous vector field on W. Suppose that $\frac{\partial F_1}{\partial x_1}$, $\frac{\partial F_2}{\partial x_2}$ and $\frac{\partial F_3}{\partial x_3}$ are continuous on an open set U containing W. Then

$$\iiint_W \operatorname{div} F \, dV = \iint_{\partial W} F \cdot n \, dA,$$

Study Guide 14 (Continued)

where n = n(p) denotes the unit outward normal vector to ∂W at $p \in \partial W$. **Proof** Since the boundary ∂W of W consists of 6 faces $S_1 \cup S_2 \cup \cdots \cup S_6$, where

$$S_{1} = \{(x_{1}, x_{2}, x_{3}) \in W \mid x_{1} = a\} \implies \text{if } p \in S_{1} \text{ then } n(p) = (-1, 0, 0)$$

$$S_{2} = \{(x_{1}, x_{2}, x_{3}) \in W \mid x_{1} = b\} \implies \text{if } p \in S_{2} \text{ then } n(p) = (1, 0, 0)$$

$$S_{3} = \{(x_{1}, x_{2}, x_{3}) \in W \mid x_{2} = c\} \implies \text{if } p \in S_{3} \text{ then } n(p) = (0, -1, 0)$$

$$S_{4} = \{(x_{1}, x_{2}, x_{3}) \in W \mid x_{2} = d\} \implies \text{if } p \in S_{4} \text{ then } n(p) = (0, 1, 0)$$

$$S_{5} = \{(x_{1}, x_{2}, x_{3}) \in W \mid x_{3} = e\} \implies \text{if } p \in S_{5} \text{ then } n(p) = (0, 0, -1)$$

$$S_{6} = \{(x_{1}, x_{2}, x_{3}) \in W \mid x_{3} = f\} \implies \text{if } p \in S_{6} \text{ then } n(p) = (0, 0, 1)$$

we have

$$\begin{split} &\iint_{W} \operatorname{div} F \, dV = \iiint_{W} \left(\frac{\partial F_{1}}{\partial x_{1}} + \frac{\partial F_{2}}{\partial x_{2}} + \frac{\partial F_{3}}{\partial x_{3}} \right) \, dV \\ &= \int_{e}^{f} \int_{c}^{d} \int_{a}^{b} \frac{\partial F_{1}}{\partial x_{1}} \, dx_{1} \, dx_{2} \, dx_{3} + \int_{e}^{f} \int_{a}^{b} \int_{c}^{d} \frac{\partial F_{2}}{\partial x_{2}} \, dx_{2} \, dx_{1} \, dx_{3} + \int_{a}^{b} \int_{c}^{d} \frac{\partial F_{3}}{\partial x_{3}} \, dx_{3} \, dx_{2} \, dx_{1} \\ &= \int_{e}^{f} \int_{c}^{d} \left(F_{1}(b, x_{2}, x_{3}) - F_{1}(a, x_{2}, x_{3})\right) \, dx_{2} \, dx_{3} + \int_{e}^{f} \int_{a}^{b} \left(F_{2}(x_{1}, d, x_{3}) - F_{2}(x_{1}, c, x_{3})\right) \, dx_{1} \, dx_{3} \\ &+ \int_{a}^{b} \int_{c}^{d} \left(F_{3}(x_{1}, x_{2}, f) - F_{3}(x_{1}, x_{2}, e)\right) \, dx_{2} \, dx_{1} \\ &= \iint_{S_{2}} F_{1}(b, x_{2}, x_{3}) \, dx_{2} \, dx_{3} - \iint_{S_{1}} F_{1}(a, x_{2}, x_{3}) \, dx_{2} \, dx_{3} + \iint_{S_{4}} F_{2}(x_{1}, d, x_{3}) \, dx_{1} \, dx_{3} \\ &- \iint_{S_{5}} F_{2}(x_{1}, c, x_{3}) \, dx_{1} \, dx_{3} + \iint_{S_{6}} F_{3}(x_{1}, x_{2}, f) \, dx_{2} \, dx_{1} - \iint_{S_{5}} F_{3}(x_{1}, x_{2}, e)) \, dx_{2} \, dx_{1} \\ &= \iint_{S_{2}} F \cdot (1, 0, 0) \, dx_{2} \, dx_{3} + \iint_{S_{1}} F \cdot (-1, 0, 0) \, dx_{2} \, dx_{3} + \iint_{S_{4}} F \cdot (0, 1, 0) \, dx_{1} \, dx_{3} \\ &+ \iint_{S_{3}} F \cdot (0, -1, 0) \, dx_{1} \, dx_{3} + \iint_{S_{6}} F \cdot (0, 0, 1) \, dx_{2} \, dx_{1} + \iint_{S_{5}} F \cdot (0, 0, -1) \, dx_{2} \, dx_{1} \\ &= \iint_{S_{2} \cup S_{1} \cup S_{4} \cup S_{3} \cup S_{6} \cup S_{5}} F \cdot n \, dA = \iint_{\partial W} F \cdot n \, dA \end{split}$$

Remark In general, if R is a regular region in \mathbb{R}^n with piecewise smooth boundary ∂R , and if $F = (F_1, \ldots, F_n)$ is a continuously differentiable vector field on $R \cup \partial R$, then

$$\int_R \operatorname{div} F \, dV = \int_{\partial R} F \cdot \nu \, dS$$

where $\nu = \nu(x)$ denotes the unit outward normal vector to ∂R at $x \in \partial R$ and dS_x denotes the volume element of ∂R at $x \in \partial R$.

Corollary (Green's Theorem) Let R be a regular region in $\mathbb{R}^2 = x_1 x_2$ -plane with piecewise smooth boundary ∂R , and let $F = (F_1, F_2) : R \cup \partial R \to \mathbb{R}^2$ be a continuously differentiable vector field on $R \cup \partial R$. Then

$$\int_{\partial R} F \cdot dx = \iint_{R} \left(\frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \right) \, dA, \quad \text{where } dx = (dx_1, dx_2)$$

Calculus

Proof Note that if $r(t) = (x_1(t), x_2(t)) : [a, b] \to \partial R$ is a parametrization (or coordinate functions) of ∂R , then

$$\int_{\partial R} F \cdot dx = \int_{r([a,b])} (F_1, F_2) \cdot (dx_1, dx_2) = \int_a^b (F_1, F_2) \cdot \left(\frac{dx_1}{dt}, \frac{dx_2}{dt}\right) dt$$

Since $r'(t) = \left(\frac{dx_1}{dt}, \frac{dx_2}{dt}\right)$ is tangent to ∂R at p = r(t), the vector $\nu(p) = \left(\frac{dx_2}{dt}, -\frac{dx_1}{dt}\right)$ is a normal vector there.

Let $G = (G_1, G_2) = (F_2, -F_1)$. Then G is a continuously differentiable vector field on $R \cup \partial R$, and

$$\int_{\partial R} F \cdot dx = \int_{\partial R} (F_1, F_2) \cdot (dx_1, dx_2) = \int_{\partial R} (F_2, -F_1) \cdot (dx_2, -dx_1) = \int_a^b (G_1, G_2) \cdot \nu \, dt,$$

and, by the divergence theorem, we have

$$\int_{a}^{b} (G_{1}, G_{2}) \cdot \nu \, dt = \int_{\partial R} G \cdot \nu = \iint_{R} \operatorname{div} G \, dA = \iint_{R} \left(\frac{\partial F_{2}}{\partial x_{1}} - \frac{\partial F_{1}}{\partial x_{2}} \right) \, dA$$

Definition If F is a continuous vector field defined on an oriented surface S with unit normal vector n, then the surface integral of F over S is

$$\iint_{S} F \cdot d\mathbf{S} = \iint_{S} F \cdot n \, dS \quad = \text{ the flux of } F \text{ across } S,$$

where $d\mathbf{S}$ is the vector area element of S, dS is the area element of S, n = n(p) is the unit outward normal vector to S at p. This integral is also called the flux of F across S.

Stokes' Theorem Let S be an oriented piecewise-smooth surface that is bounded by a simple, closed, piecewise-smooth boundary curve C with positive orientation. Let F be a vector field whose components have continuous partial derivatives on an open region in \mathbb{R}^3 that contains S. Then

$$\int_{C} F \cdot dr = \iint_{S} \operatorname{curl} F \cdot d\mathbf{S} = \iint_{R} (\nabla \times F) \cdot \frac{\partial r}{\partial s_{1}} \times \frac{\partial r}{\partial s_{2}} dA,$$

where

- $r(s_1, s_2) = (x_1(s_1, s_2), x_2(s_1, s_2), x_3(s_1, s_2)) : R \to S$ is a smooth parametrization that maps a simple, closed, piecewise-smooth bounded region R, in s_1s_2 -plane, to a surface S in $x_1x_2x_3$ space and $r : \partial R \to C$ maps the boundary ∂R of R onto C,
- $dr = \frac{\partial r}{\partial s_1} ds_1 + \frac{\partial r}{\partial s_2} ds_2$ is the tangent vector length element of C,
- $d\mathbf{S}$ is the vector area element of S and dA is the area element of R.

Remark If C is a smooth simple closed curve given by the vector equation

$$r(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k} = (x(t), y(t), 0) \quad \text{for } a \le t \le b$$

then

$$T(t) = \frac{x'(t)}{|r'(t)|} \mathbf{i} + \frac{y'(t)}{|r'(t)|} \mathbf{j} \quad \text{and} \quad n(t) = \frac{y'(t)}{|r'(t)|} \mathbf{i} - \frac{x'(t)}{|r'(t)|} \mathbf{j}.$$

are respectively the unit tangent vector and the outward unit normal vector to C at r(t), and

$$n(t) \times T(t) = \frac{(x'(t))^2 + (y'(t))^2}{|r'(t)|^2} (\mathbf{i} \times \mathbf{j}) = \mathbf{i} \times \mathbf{j} = \mathbf{k} \quad \text{for each } a \le t \le b$$

$$\implies D \subset xy\text{-plane} \implies dz = 0 \text{ on } D,$$

Since

$$\operatorname{curl} F = \left(\frac{\partial F_3}{\partial x_2} - \frac{\partial F_2}{\partial x_3}, \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1}, \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2}\right)$$

we have

$$\begin{split} \iint_{D} \operatorname{curl} F &= \mathbf{i} \iint_{D} \left[\frac{\partial F_{3}}{\partial y} - \frac{\partial F_{2}}{\partial z} \right] dy \, dz + \mathbf{j} \iint_{D} \left[\frac{\partial F_{1}}{\partial z} - \frac{\partial F_{3}}{\partial x} \right] dx \, dz + \mathbf{k} \iint_{D} \left[\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right] dx \, dy \\ &= \left(\iint_{D} \left[\frac{\partial F_{2}}{\partial x} - \frac{\partial F_{1}}{\partial y} \right] dx \, dy \right) \, \mathbf{k} \quad \text{since } dz = 0 \text{ on } D \\ &= \left(\oint_{C} F_{1} dx + F_{2} dy \right) \, \mathbf{k} \quad \text{by the Green's Theorem} \\ &= \left(\oint_{C} F(r) \cdot dr \right) \, n(t) \times T(t) \\ &\quad \text{perpendicular to the plane spanned by } T, \ n \end{split}$$

so, by setting $N = T \times n$ along C, we obtain a positively oriented basis $\{N, n, T\}$ for \mathbb{R}^3 and note that the curl F at a point p = (x, y, z) can be defined by

$$\operatorname{curl} F(p) = \lim_{A \to 0} \frac{1}{A} \iint_{D} \operatorname{curl} F = \lim_{A \to 0} \left(\frac{1}{A} \oint_{C} F(r) \cdot dr \right) N \perp \text{ the plane containing } C$$

where A is the area of D and $\oint_C F(r) \cdot dr$, a line integral along the boundary of D, measures the velocity of particles move around the axis.

Proof of Stokes' Theorem Since $C = r(\partial R)$ and $dr = \frac{\partial r}{\partial s_1} ds_1 + \frac{\partial r}{\partial s_2} ds_2$, we have

$$\int_C F \cdot dr = \int_{\partial R} \left(F \cdot \frac{\partial r}{\partial s_1} ds_1 + F \cdot \frac{\partial r}{\partial s_2} ds_2 \right) \quad \text{by the definition of line integral.}$$

Setting

$$G_1 = F \cdot \frac{\partial r}{\partial s_1}$$
 and $G_2 = F \cdot \frac{\partial r}{\partial s_2}$,

and by the Green's Theorem, we have

$$\int_C F \cdot dr = \int_{\partial R} \left(G_1 \, ds_1 + G_2 \, ds_2 \right) = \iint_R \left(\frac{\partial G_2}{\partial s_1} - \frac{\partial G_1}{\partial s_2} \right) \, ds_1 \, ds_2,$$

On the other hand, since

$$\iint_{S} \operatorname{curl} F \cdot d\mathbf{S} = \iint_{R} \operatorname{curl} F \cdot \frac{\partial r}{\partial s_{1}} \times \frac{\partial r}{\partial s_{2}} ds_{1} ds_{2},$$

and

$$\operatorname{curl} F \cdot \frac{\partial r}{\partial s_1} \times \frac{\partial r}{\partial s_2} = \begin{vmatrix} \frac{\partial F_2}{\partial x_3} & \frac{\partial F_1}{\partial x_3} - \frac{\partial F_3}{\partial x_1} & \frac{\partial F_2}{\partial x_1} - \frac{\partial F_1}{\partial x_2} \\ & \frac{\partial x_1}{\partial s_1} & \frac{\partial x_2}{\partial s_1} & \frac{\partial x_3}{\partial s_1} \\ & \frac{\partial x_1}{\partial s_2} & \frac{\partial x_2}{\partial s_2} & \frac{\partial x_3}{\partial s_2} \end{vmatrix}$$
$$= \sum_{i,j=1}^3 \left(\frac{\partial F_j}{\partial x_i} - \frac{\partial F_i}{\partial x_j} \right) \frac{\partial x_i}{\partial s_1} \frac{\partial x_j}{\partial s_2} \quad \text{by the definition of determinant}$$
$$= \sum_{i,j=1}^3 \frac{\partial F_j}{\partial x_i} \frac{\partial x_i}{\partial s_1} \frac{\partial x_2}{\partial s_2} - \sum_{i,j=1}^3 \frac{\partial F_i}{\partial x_j} \frac{\partial x_j}{\partial s_2} \frac{\partial x_i}{\partial s_1}$$
$$= \frac{\partial F}{\partial s_1} \cdot \frac{\partial r}{\partial s_2} - \frac{\partial F}{\partial s_2} \cdot \frac{\partial r}{\partial s_1} \quad \text{by the Chain Rule}$$
$$= \frac{\partial G_2}{\partial s_1} - \frac{\partial G_1}{\partial s_2}$$

we have

$$\iint_{S} \operatorname{curl} F \cdot d\mathbf{S} = \iint_{R} \left(\frac{\partial G_{2}}{\partial s_{1}} - \frac{\partial G_{1}}{\partial s_{2}} \right) \, ds_{1} \, ds_{2} = \int_{C} F \cdot dr$$

Example 1. Evaluate $\int_C F \cdot dr$, where $F(x, y, z) = -y^2 \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k}$ and C is the curve of intersection of the plane y + z = 2 and the cylinder $x^2 + y^2 = 1$. (Orient C to be counterclockwise when viewed from above.)

Solution: $\operatorname{curl} F = (1+2y) \mathbf{k}, \ S = \{z = g(x,y) = 2-y\}, \ \operatorname{curl} F \cdot dS = (0,0,1+2y) \cdot (-g_x, -g_y, 1) \, dA = (1+2y) \, dA \text{ and } \int_C F \cdot dr = \iint_S \operatorname{curl} F \cdot dS = \iint_D (1+2y) \, dA = \int_0^{2\pi} \int_0^1 (1+2r\sin\theta) \, r \, dr \, d\theta.$

Example 2. Find the flux of the vector field $F(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ over the unit sphere

$$x^2 + y^2 + z^2 = 1.$$

Solution: $r(\phi, \theta) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi), \ (\phi, \theta) \in D = \{0 \le \phi \le \pi, 0 \le \theta \le 2\pi\}.$ Then $\iint_{S} F \cdot d\mathbf{S} = \iint_{D} F \cdot r_{\phi} \times r_{\theta} \, dA = 4\pi/3.$