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Line Integrals

Definition Let E be a subset in Rm. A vector field on E is a vector (or vector-valued) function
F : E → Rn defined by

F (x) = (F1(x), F2(x), . . . , Fn(x)) ∈ Rn for each x = (x1, x2, . . . , xm) ∈ E.

Definition Let C be a plane curve defined by the parametric equations r(t) =
(
x(t) , y(t)

)
,

t ∈ [a, b]. Then

� C is called a smooth curve if r′(t) is continuous and r′(t) ̸= 0 for all t ∈ [a, b].

� C is called a piecewise smooth curve if there exists a partition

P = {a = t0 < t1 < · · · < tn = b}

such that r′(t) ̸= 0 is continuous for all t ∈ (ti−1, ti) and lim
t→t±i

r′(t) exists for each 1 ≤ i ≤ n.

Definition Let C be a smooth plane curve given by the vector function r(t) =
(
x(t) , y(t)

)
,

t ∈ [a, b], let f be a function defined on C and let s(t) =

∫ t

a

|r′(u)| du. Then the line integral of

f along C is defined by∫
C

f(x, y) ds =

∫ b

a

f(r(t)) |r′(t)| dt = lim
n→∞

n∑
i=1

f(x∗i , y
∗
i )∆si if this limit exists,

where ds = |r′(t)| dt =

Ê�
dx

dt

�2

+

�
dy

dt

�2

dt, P ∗
i (x

∗
i , y

∗
i ) = r(t∗i ) ∈ úPi−1Pi and ∆si is the length

of the subarc úPi−1Pi from Pi−1 = r(ti−1) to Pi = r(ti).

In general, if C is a (piecewise) smooth curve in Rm given by the vector function r(t) =
(x1(t), . . . , xm(t)), t ∈ [a, b] and
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� if f is a function (scalar field) defined on C, then the line integral of f along C is defined
by ∫

C

f(x1, x2, . . . , xm) ds =

∫ b

a

f(r(t)) |r′(t)| dt

= lim
n→∞

n∑
i=1

f(x∗1i, x
∗
2i, . . . , x

∗
mi)∆si if this limit exists.

� if F = (F1, . . . , Fm) is a continuous vector field defined on C, then the line integral of F
along C is defined by ∫

C

F (r) · dr =
∫ b

a

F (r(t)) · r′(t) dt,

where F (r(t)) · r′(t) denotes the inner product of F (r(t)), r′(t) ∈ Rm.

Remarks Let C (piecewise) smooth curve defined by r(t), t ∈ [a, b].

(a) If ϕ : [c, d] → [a, b] is a continuously differentiable, orientation preserving onto map such
that ϕ′(u) > 0, ϕ(c) = a, ϕ(d) = b, then C is given by the vector function R(u) defined by

C : R(u) = r(ϕ(u)), u ∈ [c, d],

and since ∫
C

F (R) · dR =

∫ d

c

F (R(u)) ·R′(u) du

=

∫ d

c

[F (r(ϕ(u))) · r′(ϕ(u))] ϕ′(u) du

Set t = ϕ(u) =⇒ dt = ϕ′(u) du, ϕ(c) = a, ϕ(d) = b

=

∫ b

a

[
F (r(t)) · r′(t)

]
dt =

∫
C

F (r) · dr

the line integral is left invariant by every orientation-preserving change of parameter.

(b) For u ∈ [a, b], let ϕ(u) = a+ b− u and let −C be a curve defined by

−C : R(u) = r(ϕ(u)) = r(a+ b− u) for u ∈ [a, b].

Since ϕ : [a, b] → [a, b] is onto, ϕ′(u) = −1, ϕ(a) = b and ϕ(b) = a, the curve −C denotes
the same curve traversed in the opposite direction and∫

−C
F (R) · dR =

∫ b

a

F (R(u)) ·R′(u) du

=

∫ b

a

[
F (r(ϕ(u))) · r′(ϕ(u))

]
ϕ′(u) du

Set t = ϕ(u) =⇒ dt = ϕ′(u) du, ϕ(a) = b, ϕ(b) = a

=

∫ a

b

[
F (r(t)) · r′(t)

]
dt = −

∫ b

a

[
F (r(t)) · r′(t)

]
dt = −

∫
C

F (r) · dr

Examples
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1. Evaluate

∫
C

(2 + x2y) ds, where C is the upper half of the unit circle x2 + y2 = 1.

2. The center of mass of the wire C with density function ρ(x, y), (x, y) ∈ C, is located at the
point

x̄ =
1

m

∫
C

xρ(x, y) ds ȳ =
1

m

∫
C

yρ(x, y) ds, where m =

∫
C

ρ(x, y) ds = total mass of C.

3. Evaluate

∫
C1

y2 dx+x dy, where C1 is the line segment from (−5,−3) to (0, 2), and evaluate∫
C2

y2 dx+ x dy, where C2 is the arc of the parabola x = 4− y2 from (−5,−3) to (0, 2).

4. Evaluate

∫
C

y sin z ds, where C is the circular helix given by the equations x = cos t,

y = sin t, z = t, 0 ≤ t ≤ 2π.

5. Find the work done

∫
C

F (r) · dr by the force field F (x, y) = x2 i− xy j in moving a particle

along the quarter-circle C : r(t) = cos t i+ sin t j, 0 ≤ t ≤ π/2.

Definition Let E be a subset of Rn and let F = (F1, F2, . . . , Fn) : E → Rn be a vector field
defined on E. Then F is called a conservative vector field if there exists a function f : Rn → R
such that

F (x) = ∇f(x) for all x ∈ E.

Note that if F is a continuously differentiable conservative vector field, then f has continuous
2nd order partial derivatives fxixj = fxjxi and

∂Fi
∂xj

= fxixj = fxjxi =
∂Fj
∂xi

=⇒ ∂Fi
∂xj

=
∂Fj
∂xi

for each 1 ≤ i, j ≤ n (integrability conditions)

In this situation, the function f is called a potential function for F.

Definition Let F be a continuous vector field defined on D, and let C1 and C2 be paths in D

having the same initial points and the same terminal points. Then the line integral

∫
C

F · dr is

called independent of path if ∫
C1

F · dr =
∫
C2

F · dr

Fundamental Theorem for Line Integrals Let U be an open subset of Rm, let f : U → R
be a continuously differentiable scalar field (function) and let C : r = r(u), u ∈ [a, b] be a
(piecewise) smooth curve that begins at p = r(a) and ends at q = r(b). Then the line integral of
(a conservative field) ∇f along C satisfies that∫

C

∇f(r) · dr = f(r(b))− f(r(a)) = f(q)− f(p)

and is independent of the choice of paths in U joining from p to q.

Proof
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Case 1: If C is smooth, then∫
C

∇f(r) · dr =
∫ b

a

∇f(r(u)) · r′(u) du =

∫ b

a

�
d

du
f(r(u))

�
du = f(r(b))− f(r(a)).

Case 2: If C a (piecewise) smooth and {a = a0 < a1 < · · · < an−1 < an = b} is a partition of
[a, b] such that

C =
n⋃
i=1

Ci where Ci = {r(t) | t ∈ [ai−1, ai]} is smooth for 1 ≤ i ≤ n,

then∫
C

∇f(r) · dr =

∫
⋃n

i=1 Ci

∇f(r) · dr =
n∑
i=1

∫
Ci

∇f(r) · dr =
n∑
i=1

∫ ai

ai−1

∇f(r(u)) · r′(u) du

Case 1
=

n∑
i=1

f(r(ai))− f(r(ai−1)) = f(r(b))− f(r(a)).

Remarks

(a) This is a generalization of the Fundamental Theorem of Calculus since if g : [a, b] → R is a
continuous function with an anti-derivative G(x) on (a, b) and if C is the line segment given
by r(x) = x, x ∈ [a, b] ⊂ R, then

G(b)−G(a) =

∫
C

∇G(r) · dr =
∫ b

a

d

dx
G(x) dx =

∫ b

a

g(x) dx

(b) If C : r = r(u), u ∈ [a, b] is a (piecewise) smooth closed curve and if f is continuously
differentiable on an open set U containing C, then∫

C

∇f(r) · dr = f(r(b))− f(r(a)) = 0 since r(b) = r(a).

This implies that if F = ∇f is conservative and continuous in U, the line integral

∫
C

F (r) ·

dr = 0 along any (piecewise) smooth closed curve C in U.

Examples

1. Find the work done by the gravitational field F (X) = −mMG

|X|3
X, X = (x, y, z) ∈ R3,

in moving a particle with mass m from the point (3, 4, 12) to the point (2, 2, 0) along a
piecewise-smooth curve C.

2. Determine whether or not the given vector field is conservative.

• F (x, y) = (x− y) i+ (x− 2) j.

• F (x, y) = (3 + 2xy) i+ (x2 − 3y2) j.

Definition A continuous curve C : r = r(u) u ∈ [a, b] is called simple if

r(u) ̸= r(t) for all a ≤ t < u < b ⇐⇒ for all u ̸= t ∈ [a, b).

A Jordan curve is a plane curve that is both closed and simple.
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Definition A region D is called (path) connected if any two points in D can be joined by a
path that lies in D, i.e. D is (path) connected if for all p, q ∈ D, there exists a continuous map
r : [a, b] → D from [a, b] into D such that r(a) = p and r(b) = q.

Definition Let D be a region in the plane. Then D is called simply-connected if every simple
closed curve in D encloses only points that are in D.

Remark If F = ∇f is conservative and continuous in D, and if C1 and C2 are paths in D having
the same initial points and the same terminal points. Then C1 ∪ (−C2) is a closed curve in D,
and

0 =

∫
C1∪(−C2)

F · dr =
∫
C1

F · dr +
∫
−C2

F · dr =
∫
C1

F · dr −
∫
C2

F · dr

=⇒
∫
C1

F · dr =
∫
C2

F · dr (independent of path)

Green’s Theorem Let F = (P,Q) be a vector field on an simply-connected region Ω. Suppose
that P and Q have continuous first-order partial derivatives on an open set that contains Ω, then∫∫

Ω

�
∂Q

∂x
− ∂P

∂y

�
dx dy =

∮
C

Pdx+Qdy,

where the boundary C = ∂Ω is oriented in the positive direction such that Ω is on the left-

hand-side when traversing along C, and

∮
C

denotes the line integral along C in the positively

orientation.

Proof Suppose that Ω is an elementary region given by

{(x, y) | a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)} or {(x, y) | ψ1(y) ≤ x ≤ ψ2(y), c ≤ x ≤ d},

such that the boundary ∂Ω = C = C1 ∪ C2 = C3 ∪ C4, where

C1 = {(x, y) | y = ϕ1(x), a ≤ x ≤ b}, C2 = {(x, y) | y = ϕ2(x), a ≤ x ≤ b},
C3 = {(x, y) | x = ψ1(y), c ≤ y ≤ d}, C4 = {(x, y) | x = ψ2(y), c ≤ y ≤ d}.
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Since ∫∫
Ω

∂Q

∂x
dx dy =

∫ d

c

∫ ψ2(y)

ψ1(y)

∂Q

∂x
dx dy =

∫ d

c

Q(ψ2(y), y) dy −
∫ d

c

Q(ψ1(y), y) dy∫∫
Ω

−∂P
∂y

dy dx = −
∫ b

a

∫ ϕ2(x)

ϕ1(x)

∂P

∂y
dy dx =

∫ b

a

P (x, ϕ1(x)) dx−
∫ b

a

P (x, ϕ2(x)) dx

and∮
C

Qdy =

∫
C4∪

(
−C3

) Qdy =

∫
C4

Qdy −
∫
C3

Qdy =

∫ d

c

Q(ψ2(y), y) dy −
∫ d

c

Q(ψ1(y), y) dy∮
C

P dx =

∫
C1∪

(
−C2

) P dx =

∫
C1

P dx−
∫
C2

P dx =

∫ b

a

P (x, ϕ1(x)) dx−
∫ b

a

P (x, ϕ2(x)) dx

we have ∫∫
Ω

�
∂Q

∂x
− ∂P

∂y

�
dx dy =

∮
C

Pdx+Qdy.

Remark Suppose that D1 and D2 are simply-connected regions with boundaries ∂D1 = C3∪C1

and ∂D2 = C2∪ (−C3) respectively and suppose that D = D1∪D2 has the boundary C = ∂D =
C1 ∪ C2.

Since∫∫
D

�
∂Q

∂x
− ∂P

∂y

�
dx =

∫∫
D1∪D2

�
∂Q

∂x
− ∂P

∂y

�
dx =

∫∫
D1

�
∂Q

∂x
− ∂P

∂y

�
dx+

∫∫
D2

�
∂Q

∂x
− ∂P

∂y

�
dx

∮
C

P dx+Qdy =

∮
C1∪C2∪C3∪(−C3)

P dx+Qdy =

∮
C1∪C3

P dx+Qdy +

∮
C2∪(−C3)

P dx+Qdy

and since D1, D2 are simple regions as in the preceding proof, we have∫∫
D1

�
∂Q

∂x
− ∂P

∂y

�
dx =

∮
C1∪C3

Pdx+Qdy∫∫
D2

�
∂Q

∂x
− ∂P

∂y

�
dx =

∮
C2∪(−C3)

Pdx+Qdy

This proves the Green’s Theorem on a more general region D∫∫
D

�
∂Q

∂x
− ∂P

∂y

�
dx dy =

∮
C1∪C2

Pdx+Qdy =

∮
∂D

Pdx+Qdy.
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Theorem Let F = (P,Q) be a vector field on a simply-connected region D. Suppose that P and
Q have continuous first-order partial derivatives and

∂P

∂y
=
∂Q

∂x
throughout D (integrability condition)

Then F is conservative, i.e. there is a continuously differentiable function f : D → R such that
F = ∇f on D.

Proof Fix a point p = (a, b) ∈ D. For any (s, t) ∈ D, let f : D → R be defined by

f(s, t) =

∫
C

P dx+Qdy, where C is a piecewise smooth path in D from p to (s, t).

This is well defined since if C1 is another piecewise smooth path in D from p to (s, t) such that
C ∪ (−C1) is a simple closed curve enclosing a region E ⊂ D. By the Green’s Theorem, we have

∫
C

P dx+Qdy −
∫
C1

P dx+Qdy =

∮
C∪(−C1)

P dx+Qdy =

∫∫
E

�
∂Q

∂x
− ∂P

∂y

�
dx dy = 0,

and ∫
C

P dx+Qdy =

∫
C1

P dx+Qdy (independent of path)

Hence we may simply rewrite the definition of f at each point (s, t) ∈ D as follows

f(s, t) =

∫ (s,t)

p

P dx+Qdy,

where the line integral is integrated along any piecewise smooth path in D from p to (s, t). For
each (s, t) ∈ D and for any sufficiently small h, k such that (s+ h, t+ k) ∈ D, since

f(s+ h, t) =

∫ (s+h,t)

p

P dx+Qdy

=

∫ (s,t)

p

P dx+Qdy +

∫ (s+h,t)

(s,t)

P dx+Qdy

since y = t (const.) on (s, t) → (s+ h, t) =⇒ dy = 0

= f(s, t) +

∫ (s+h,t)

(s,t)

P dx

= f(s, t) +

∫ s+h

s

P (x, t) dx,

f(s, t+ k) =

∫ (s,t+k)

p

P dx+Qdy

=

∫ (s,t)

p

P dx+Qdy +

∫ (s,t+k)

(s,t)

P dx+Qdy

since x = s (const.) on (s, t) → (s, t+ k) =⇒ dx = 0

= f(s, t) +

∫ (s,t+k)

(s,t)

Qdy

= f(s, t) +

∫ t+k

t

Q(s, y) dy,
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by the Fundamental Theorem of Calculus, we have

fx(s, t) = lim
h→0

f(s+ h, t)− f(s, t)

h
= lim

h→0

∫ s+h
s

P (x, t) dx

h
= P (s, t)

fy(s, t) = lim
k→0

f(s, t+ k)− f(s, t)

k
= lim

k→0

∫ t+k
t

Q(s, y)dy

k
= Q(s, t)

Hence
F = (P,Q) = (fx, fy) = ∇f on D =⇒ F is conservative on D.

Examples

1. Evaluate

∫
C

x4 dx + xy dy, where C is the triangular curve consisting of the line segments

from (0, 0) to (1, 0), from (1, 0) to (0, 1) and from (0, 1) to (0, 0).

Solution: By the Green’s Theorem

∫
C

x4 dx+ xy dy =

∫ 1

0

∫ 1−x

0

(y − 0) dy dx.

2. Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let
D be the region bounded by C. By the Green’s Theorem, the area of D is given by

A(D) =

∮
C

x dy = −
∮
C

y dx =
1

2

∮
C

x dy − y dx,

where C is positively oriented (i.e. move along C in the direction so that D is on the left).

Use the formula to find the area enclosed by the ellipse
x2

a2
+
y2

b2
= 1.

Solution: By the Green’s Theorem, A =
1

2

∮
C

x dy − y dx =
1

2

∫ 2π

0

a b dθ

3. Evaluate

∫
C

y2 dx + 3xy dy, where C is the boundary of the semiannular region D in the

upper half-plane between the circles x2 + y2 = 1 and x2 + y2 = 4.

Solution: By the Green’s Theorem

∫
C

y2 dx+ 3xy dy =

∫∫
D

y dA =

∫ π

0

∫ 2

1

r2 sin θ dr dθ

Curl and Divergence

Definition Let E be a subset of R3 and let F = (F1, F2, F3) be a vector field, f be a differentiable
function defined on E. Let the vector differential operator ∇ (“del”) be defined by

∇ = i
∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

Suppose that the partial derivatives of F1, F2, F3, and f all exist, then the curl of F is the vector
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field on R3 defined by

curlF = ∇× F =

∣∣∣∣∣∣∣∣∣
i j k

∂

∂x1

∂

∂x2

∂

∂x3

F1 F2 F3

∣∣∣∣∣∣∣∣∣
=

�
∂F3

∂x2
− ∂F2

∂x3

�
i+

�
∂F1

∂x3
− ∂F3

∂x1

�
j+

�
∂F2

∂x1
− ∂F1

∂x2

�
k

=

�
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

�
the gradient of f is a vector field on R3 defined by

grad f = ∇f =
∂f

∂x1
i+

∂f

∂x2
j+

∂f

∂x3
k =

(
fx1 , fx2 , fx3

)
and the divergence of F is a function on R3 defined by

divF = ∇ · F =
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3
, where ∇ = i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

Example Let F (x, y, z) = xz i+ xyz j− y2 k. (1) Find curlF. (2) Find divF.

Theorem Let F = (F1, F2, F3) be a vector field defined on R3. Suppose that the component
functions have continuous partial derivatives. Then curlF = 0 if and only if F is a conservative
vector field.

Proof If

curlF =

�
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

�
= (0, 0, 0) on R3,

the integrability conditions hold and there is a continuously differentiable function f : R3 → R
such that F = ∇f on R3, i.e. F is a conservative vector field.

Conversely, if F is a conservative vector field such that there is a continuously differentiable
function f : R3 → R having has continuous 2nd order partial derivatives on R3, then

curlF = curl∇f = 0 on R3.

Theorem Let F = (F1, F2, F3) be a vector field defined on R3. Suppose that the component
functions have continuous 2nd order partial derivatives. Then

div curlF = 0 on R3.

Divergence Theorem Let W = {(x1, x2, x3) ∈ R3 | a ≤ x1 ≤ b, c ≤ x2 ≤ d, e ≤ x3 ≤ f} be a

closed cell in R3 and let F = (F1, F2, F3) be a continuous vector field on W. Suppose that
∂F1

∂x1
,

∂F2

∂x2
and

∂F3

∂x3
are continuous on an open set U containing W. Then∫∫∫

W

divF dV =

∫∫
∂W

F · n dA,
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where n = n(p) denotes the unit outward normal vector to ∂W at p ∈ ∂W.

Proof Since the boundary ∂W of W consists of 6 faces S1 ∪ S2 ∪ · · · ∪ S6, where

S1 = {(x1, x2, x3) ∈ W | x1 = a} =⇒ if p ∈ S1 then n(p) = (−1, 0, 0)

S2 = {(x1, x2, x3) ∈ W | x1 = b} =⇒ if p ∈ S2 then n(p) = (1, 0, 0)

S3 = {(x1, x2, x3) ∈ W | x2 = c} =⇒ if p ∈ S3 then n(p) = (0,−1, 0)

S4 = {(x1, x2, x3) ∈ W | x2 = d} =⇒ if p ∈ S4 then n(p) = (0, 1, 0)

S5 = {(x1, x2, x3) ∈ W | x3 = e} =⇒ if p ∈ S5 then n(p) = (0, 0,−1)

S6 = {(x1, x2, x3) ∈ W | x3 = f} =⇒ if p ∈ S6 then n(p) = (0, 0, 1)

we have∫∫∫
W

divF dV =

∫∫∫
W

�
∂F1

∂x1
+
∂F2

∂x2
+
∂F3

∂x3

�
dV

=

∫ f

e

∫ d

c

∫ b

a

∂F1

∂x1
dx1 dx2 dx3 +

∫ f

e

∫ b

a

∫ d

c

∂F2

∂x2
dx2 dx1 dx3 +

∫ b

a

∫ d

c

∫ f

e

∂F3

∂x3
dx3 dx2 dx1

=

∫ f

e

∫ d

c

(F1(b, x2, x3)− F1(a, x2, x3)) dx2 dx3 +

∫ f

e

∫ b

a

(F2(x1, d, x3)− F2(x1, c, x3)) dx1 dx3

+

∫ b

a

∫ d

c

(F3(x1, x2, f)− F3(x1, x2, e)) dx2 dx1

=

∫∫
S2

F1(b, x2, x3) dx2 dx3 −
∫∫

S1

F1(a, x2, x3) dx2 dx3 +

∫∫
S4

F2(x1, d, x3) dx1 dx3

−
∫∫

S3

F2(x1, c, x3) dx1 dx3 +

∫∫
S6

F3(x1, x2, f) dx2 dx1 −
∫∫

S5

F3(x1, x2, e)) dx2 dx1

=

∫∫
S2

F · (1, 0, 0) dx2 dx3 +
∫∫

S1

F · (−1, 0, 0) dx2 dx3 +

∫∫
S4

F · (0, 1, 0) dx1 dx3

+

∫∫
S3

F · (0,−1, 0) dx1 dx3 +

∫∫
S6

F · (0, 0, 1) dx2 dx1 +
∫∫

S5

F · (0, 0,−1) dx2 dx1

=

∫∫
S2∪S1∪S4∪S3∪S6∪S5

F · n dA =

∫∫
∂W

F · n dA

Remark In general, if R is a regular region in Rn with piecewise smooth boundary ∂R, and if
F = (F1, . . . , Fn) is a continuously differentiable vector field on R ∪ ∂R, then∫

R

divF dV =

∫
∂R

F · ν dS

where ν = ν(x) denotes the unit outward normal vector to ∂R at x ∈ ∂R and dSx denotes the
volume element of ∂R at x ∈ ∂R.

Corollary (Green’s Theorem) Let R be a regular region in R2 = x1x2-plane with piecewise
smooth boundary ∂R, and let F = (F1, F2) : R∪∂R → R2 be a continuously differentiable vector
field on R ∪ ∂R. Then∫

∂R

F · dx =

∫∫
R

�
∂F2

∂x1
− ∂F1

∂x2

�
dA, where dx = (dx1, dx2)
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Calculus Study Guide 14 (Continued)

Proof Note that if r(t) = (x1(t), x2(t)) : [a, b] → ∂R is a parametrization (or coordinate func-
tions) of ∂R, then∫

∂R

F · dx =

∫
r([a,b])

(F1, F2) · (dx1, dx2) =
∫ b

a

(F1, F2) ·
�
dx1
dt
,
dx2
dt

�
dt

Since r′(t) =

�
dx1
dt
,
dx2
dt

�
is tangent to ∂R at p = r(t), the vector ν(p) =

�
dx2
dt
,−dx1

dt

�
is a

normal vector there.

Let G = (G1, G2) = (F2,−F1) . Then G is a continuously differentiable vector field on R ∪ ∂R,
and∫

∂R

F · dx =

∫
∂R

(F1, F2) · (dx1, dx2) =
∫
∂R

(F2,−F1) · (dx2,−dx1) =
∫ b

a

(G1, G2) · ν dt,

and, by the divergence theorem, we have

∫ b

a

(
G1, G2

)
· ν dt =

∫
∂R

G · ν =

∫∫
R

divGdA =

∫∫
R

�
∂F2

∂x1
− ∂F1

∂x2

�
dA

Definition If F is a continuous vector field defined on an oriented surface S with unit normal
vector n, then the surface integral of F over S is∫∫

S

F · dS =

∫∫
S

F · n dS = the flux of F across S,

where dS is the vector area element of S, dS is the area element of S, n = n(p) is the unit
outward normal vector to S at p. This integral is also called the flux of F across S.

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is bounded by a simple,
closed, piecewise-smooth boundary curve C with positive orientation. Let F be a vector field
whose components have continuous partial derivatives on an open region in R3 that contains S.
Then ∫

C

F · dr =
∫∫

S

curlF · dS =

∫∫
R

(∇× F ) · ∂r
∂s1

× ∂r

∂s2
dA,

where

� r(s1, s2) = (x1(s1, s2), x2(s1, s2), x3(s1, s2)) : R → S is a smooth parametrization that maps
a simple, closed, piecewise-smooth bounded region R, in s1s2-plane, to a surface S in x1x2x3-
space and r : ∂R → C maps the boundary ∂R of R onto C,

� dr =
∂r

∂s1
ds1 +

∂r

∂s2
ds2 is the tangent vector length element of C,

� dS is the vector area element of S and dA is the area element of R.

Remark If C is a smooth simple closed curve given by the vector equation

r(t) = x(t) i+ y(t) j+ z(t)k =
(
x(t), y(t), 0

)
for a ≤ t ≤ b

then

T (t) =
x′(t)

|r′(t)|
i+

y′(t)

|r′(t)|
j and n(t) =

y′(t)

|r′(t)|
i− x′(t)

|r′(t)|
j.
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Calculus Study Guide 14 (Continued)

are respectively the unit tangent vector and the outward unit normal vector to C at r(t),

and

n(t)× T (t) =
(x′(t))2 + (y′(t))2

|r′(t)|2
(i× j) = i× j = k for each a ≤ t ≤ b

=⇒ D ⊂ xy-plane =⇒ dz = 0 on D,

Since

curlF =

�
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

�

we have

∫∫
D

curlF = i

∫∫
D

�
∂F3

∂y
− ∂F2

∂z

�
dy dz + j

∫∫
D

�
∂F1

∂z
− ∂F3

∂x

�
dx dz + k

∫∫
D

�
∂F2

∂x
− ∂F1

∂y

�
dx dy

=

�∫∫
D

�
∂F2

∂x
− ∂F1

∂y

�
dx dy

�
k since dz = 0 on D

=

�∮
C

F1dx+ F2dy

�
k by the Green’s Theorem

=

�∮
C

F (r) · dr
�
n(t)× T (t)

perpendicular to the plane spanned by T, n

so, by setting N = T × n along C, we obtain a positively oriented basis {N, n, T} for R3 and
note that the curlF at a point p = (x, y, z) can be defined by

curlF (p) = lim
A→0

1

A

∫∫
D

curlF = lim
A→0

�
1

A

∮
C

F (r) · dr
�
N ⊥ the plane containing C

where A is the area of D and

∮
C

F (r) · dr, a line integral along the boundary of D, measures the

velocity of particles move around the axis.

Proof of Stokes’ Theorem Since C = r(∂R) and dr =
∂r

∂s1
ds1 +

∂r

∂s2
ds2, we have

∫
C

F · dr =
∫
∂R

�
F · ∂r

∂s1
ds1 + F · ∂r

∂s2
ds2

�
by the definition of line integral.
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Setting

G1 = F · ∂r

∂s1
and G2 = F · ∂r

∂s2
,

and by the Green’s Theorem, we have∫
C

F · dr =
∫
∂R

(G1 ds1 +G2 ds2) =

∫∫
R

�
∂G2

∂s1
− ∂G1

∂s2

�
ds1 ds2,

On the other hand, since∫∫
S

curlF · dS =

∫∫
R

curlF · ∂r

∂s1
× ∂r

∂s2
ds1 ds2,

and

curlF · ∂r

∂s1
× ∂r

∂s2
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F3

∂x2
− ∂F2

∂x3

∂F1

∂x3
− ∂F3

∂x1

∂F2

∂x1
− ∂F1

∂x2
∂x1
∂s1

∂x2
∂s1

∂x3
∂s1

∂x1
∂s2

∂x2
∂s2

∂x3
∂s2

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

3∑
i,j=1

�
∂Fj
∂xi

− ∂Fi
∂xj

�
∂xi
∂s1

∂xj
∂s2

by the definition of determinant

=
3∑

i,j=1

∂Fj
∂xi

∂xi
∂s1

∂xj
∂s2

−
3∑

i,j=1

∂Fi
∂xj

∂xj
∂s2

∂xi
∂s1

=
∂F

∂s1
· ∂r

∂s2
− ∂F

∂s2
· ∂r

∂s1
by the Chain Rule

=
∂G2

∂s1
− ∂G1

∂s2

we have ∫∫
S

curlF · dS =

∫∫
R

�
∂G2

∂s1
− ∂G1

∂s2

�
ds1 ds2 =

∫
C

F · dr

Example 1. Evaluate

∫
C

F · dr, where F (x, y, z) = −y2 i + x j + z2 k and C is the curve of

intersection of the plane y+z = 2 and the cylinder x2+y2 = 1. (Orient C to be counterclockwise
when viewed from above.)
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Solution: curlF = (1 + 2y)k, S = {z = g(x, y) = 2 − y}, curlF · dS = (0, 0, 1 + 2y) ·

(−gx,−gy, 1) dA = (1+2y) dA and

∫
C

F · dr =
∫∫

S

curlF · dS =

∫∫
D

(1+2y) dA =

∫ 2π

0

∫ 1

0

(1+

2r sin θ) r dr dθ.

Example 2. Find the flux of the vector field F (x, y, z) = z i+ y j+ xk over the unit sphere

x2 + y2 + z2 = 1.

Solution: r(ϕ, θ) = (sinϕ cos θ, sinϕ sin θ, cosϕ), (ϕ, θ) ∈ D = {0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π}. Then∫∫
S

F · dS =

∫∫
D

F · rϕ × rθ dA = 4π/3.
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